Efectos del cadmio sobre el crecimiento y la composición elemental de la alfalfa en cultivo de arena

Autores/as

  • Klaus P. Raven Willwater Universidad Nacional Agraria La Molina, Lima, Perú.

DOI:

https://doi.org/10.21704/ac.v79i2.912

Palabras clave:

cadmio, alfalfa, crecimiento, elemento, nutriente, arena.

Resumen

El cadmio (Cd) es un elemento traza natural que puede provocar toxicidad en las plantas. Los objetivos de esta investigación fueron evaluar los efectos del nivel de Cd en un medio de arena sobre el crecimiento de la alfalfa y su contenido de Cd, calcio (Ca), cobre (Cu), hierro (Fe), potasio (K), magnesio (Mg), manganeso (Mn), nitrógeno (N), sodio (Na), fósforo (P), azufre (S) y zinc (Zn). Los tratamientos fueron 3 dosis de Cd: 0, 5 y 25 mg kg-1 arena. Semillas de alfalfa fueron sembradas en estos medios, en base a un diseño de bloques completos randomizados con tres repeticiones. Las plantas se dejaron crecer por 60 días, siendo periódicamente regadas y fertilizadas. A la cosecha, se evaluaron el contenido de clorofila, la materia seca de raíces y parte aérea y las concentraciones de los mencionados elementos en la materia seca. A mayor dosis de Cd se observaron notorias reducciones del contenido de clorofila y del crecimiento vegetal. Ninguna de las plantas, ya sea expuestas o no a este elemento, mostraron carencia o exceso de algún nutriente mineral estudiado. La adición de Cd tendió a provocar la concentración de elementos nutritivos en la reducida materia seca y la acumulación preferencial de estos en la parte aérea a expensas de las raíces. No se observó ningún efecto específico notorio de este elemento sobre los nutrientes minerales evaluados. Aparentemente, una limitada fotosíntesis en las plantas fue el daño directo principal del Cd en este estudio.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Klaus P. Raven Willwater, Universidad Nacional Agraria La Molina, Lima, Perú.
    Estudiante de maestría en Tecnología de Alimentos

Referencias

Ahmad, P.; Abdel, A.A.; Abd_Allah, E.F.; Hashem, A.; Sarwat, M.; Anjum, N.A. and Gucel, S. 2016. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.). Frontiers in Plant Science, 7:513. doi: 10.3389/fpls.2016.00513.

Angle, J.S. and Chaney, R.L. 1991. Heavy metal effects on soil populations and heavy metal tolerance of Rhizobium meliloti, nodulation, and growth of alfalfa. Water, Air, and Soil Pollution, 57 (1):597-604.

Arshad, M.; Ali, S.; Noman, A.; Ali, Q.; Rizwan, M.; Farid, M. and Irshad, M.K. 2016. Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Archives of Agronomy and Soil Science, 62 (4):533-546.

Astolfi, S.; Ortolani, M.R.; Catarcione, G.; Paolacci, A.R.; Cesco, S.; Pinton, R. and Ciaffi, M. 2014. Cadmium exposure affects iron acquisition in barley (Hordeum vulgare) seedlings. Physiologia Plantarum, 152 (4):646-659.

Bashir, H.; Ibrahim, M.M.; Bagheri, R.; Ahmad, J.; Arif, I.A.; Baig, M.A. and Qureshi, M.I. 2015. Influence of sulfur and cadmium on antioxidants, phytochelatins, and growth in Indian mustard. AoB Plants, 7:1. doi:10.1093/aobpla/plv001.

Bazán, T. R. 1996. Manual para el análisis químico de suelos, aguas y plantas. Universidad Nacional Agraria La Molina - Fundación Perú, Lima, Perú. 55 p.

Bingham, F.T.; Page, A.L.; Mahler, R.J. and Ganje, T.J. 1975. Growth and cadmium accumulation of plants grown on a soil treated with a cadmium-enriched sewage sludge. Journal of Environmental Quality, 4 (2):207-211.

Borišev, M.; Pajević, S.; Nikolić, N.; Orlović, S.; Župunski, N.; Pilipović, A. and Kerbert, M. 2016. Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L. International Journal of Phytoremediation, 18 (2):164-170.

Chaoui, A.; Ghorbal, M.H. and El Ferjani, E. 1997. Effects of cadmium-zinc interactions on hydroponically grown bean (Phaseolus vulgaris L.). Plant Science, 126 (1): 21-28.

DalCorso, G.; Manara, A. and Furini, A. 2013. An overview of heavy metal challenge in plants: From roots to shoots. Metallomics, 5:1117-1132.

Dias, M.C.; Monteiro, C.; Moutinho-Pereira, J.; Correia, C.; Gonçalves, B. and Santos, C. 2013. Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum, 35 (4):1281-1289.

Dražić, G.; Mihailović, N. and Lojić, M. 2006. Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biologia Plantarum, 50 (2):239-244.

Eller, F. & Brix, H. 2016. Influence of low calcium availability on cadmium uptake and translocation in a fast-growing shrub and a metal-accumulating herb. AoB Plants, 8:143. doi:10.1093/aobpla/plv143.

Elouear, Z.; Bouhamed, F.; Boujelben, N. and Bouzid, J. 2016. Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants. Sustainable Environment Research, 26 (3):131-135.

Ghnaya, T.; Mnassri, M.; Ghabriche, R.; Wali, M.; Poschenrieder, C.; Lutts, S. and Abdelly, C. 2015. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L. Frontiers in Plant Science, 6:863. doi 10.3389/fpls.2015.00863.

Gill, S.S.; Khan, N.A. and Tuteja, N. 2012. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Science, 182:112-120.

Gomes, M.P.; Marques, T. and Soares, A.M. 2013. Cadmium effects on mineral nutrition of the Cd-hyperaccumulator Pfaffia glomerata. Biologia, 68 (2):223-230.

Hédiji, H.; Djebali, W.; Belkadhi, A.; Cabasson, C.; Moing, A.; Rolin, D.; Brouquisse, R.; Gallusci, P. and Chaibi, W. 2015. Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: Consequences on fruit production. South African Journal of Botany ,97:176-181.

Hollander, M.; Wolfe, D.A. and Chicken, E. 2014. Nonparametric statistical methods. 3ra Edición. John Wiley & Sons, Hoboken, New Jersey, EEUU. 819 p.

Ibekwe, A.M.; Angle, J.S.; Chaney, R.L. and Van Berkum, P. 1996. Zinc and cadmium toxicity to alfalfa and its microsymbiont. Journal of Environmental Quality, 25 (5):1032-1040.

Irfan, M.; Hayat, S.; Ahmad, A. and Alyemeni, M.N. 2013. Soil cadmium enrichment: Allocations and plant physiological manifestations. Saudi Journal of Biological Sciences, 20 (1):1-10.

Jones, J.B. and Case, V.W. 1990. Sampling, handling, and analyzing plant tissue samples. En: Westerman (Comp.). Soil testing and plant analysis. 3ra Edición. Soil Science Society of America Book Series No. 3. Soil Science Society of America, Madison, Wisconsin, EEUU. 389-427p.

Kabata-Pendias, A. and Szteke, B. 2015. Trace elements in abiotic and biotic environments. CRC Press, Boca Raton, Florida, EEUU. 505 pp.

Li, P.; Zhao, C.; Zhang, Y.; Wang, X.; Wang, X.; Wang, J.; Wang, F. and Bi, Y. 2016. Calcium alleviates cadmium-induced inhibition on root growth by maintaining auxin homeostasis in Arabidopsis seedlings. Protoplasma, 253(1):185-200.

Lopes Júnior, C.A.; Mazzafera, P. and Zezzi, M.A. 2014. A comparative ionomic approach focusing on cadmium effects in sunflowers (Helianthus annuus L.). Environmental and Experimental Botany, 107:180-186.

Motesharezadeh, B.; Savaghebi-Firoozabadi, G.R.; Mirseyed Hosseini, H. and Alikhani, H.A. 2010. Study of the enhanced phytoextraction of cadmium in a calcareous soil. International Journal of Environmental Research, 4(3):525-532.

Ott, R.L. and Longnecker, M.T. 2016. An introduction to statistical methods and data analysis. 7ma Edición. Cengage Learning, Boston, Massachusetts, EEUU. 1174 p.

Pérez-Romero, J.A.; Redondo-Gómez, S. and Mateos-Naranjo, E. 2016. Growth and photosynthetic limitation analysis of the Cd-accumulator Salicornia ramosissima under excessive cadmium concentrations and optimum salinity conditions. Plant Physiology and Biochemistry, 109:103-113.

Pinkerton, A.; Smith, F.W. and Lewis, D.C. 1997. 6. Pasture species. En: Reuter, D.J.; Robinson, J.B. (Comp.). Plant analysis: An interpretation manual. 2da. Edición. CSIRO Publishing, Collingwood, Victoria, Australia. pp. 287-346.

Sebastian, A. and Prasad, M.N.V. 2015. Iron- and manganese-assisted cadmium tolerance in Oryza sativa L.: Lowering the rhizotoxicity next to functional photosynthesis. Planta, 241 (6):1519-1528.

Wu, F.; Zhang, G. and Yu, J. 2003. Interaction of cadmium and four microelements for uptake and translocation in different barley genotypes. Communications in Soil Science and Plant Analysis, 34 (13):2003-2020.

Yang, Y.; Chen, R.; Fu, G.; Xiong, J. and Tao, L. 2016. Phosphate deprivation decreases cadmium (Cd) uptake but enhances sensitivity to Cd by increasing iron (Fe) uptake and inhibiting phytochelatins synthesis in rice (Oryza sativa). Acta Physiologiae Plantarum, 38:28. doi:10.1007/s11738-015-2055-9.

Zhang, F.; Wan, X.; Zheng, Y.; Sun, L.; Chen, Q.; Zhu, X.; Guo, Y. and Liu, M. 2014. Effects of nitrogen on the activity of antioxidant enzymes and gene expression in leaves of Populus plants subjected to cadmium stress. Journal of Plant Interactions, 9 (1):599-609.

Descargas

Publicado

2018-12-29

Número

Sección

Artículos originales / Ciencias Agrícolas y Biológicas

Cómo citar

Raven Willwater, K. P. (2018). Efectos del cadmio sobre el crecimiento y la composición elemental de la alfalfa en cultivo de arena. Anales Científicos, 79(2), 406-414. https://doi.org/10.21704/ac.v79i2.912