Peruvian Botanical Biopesticides for Sustainable Development and Protection of the Environment

Authors

  • J. Bracho-Pérez
  • I. Tacza-Valverde
  • J. Vásquez-Castro

DOI:

https://doi.org/10.21704/pja.v3i3.1206

Keywords:

Botanical biopesticides, Clibadium peruvianum, Daphnia magna, housefly, Musca domestica, Petiveria alliacea.

Abstract

Daphnia magna is proposed as a bioindicator to establish the minimum concentration capable of controlling pests before performing toxicity tests. This study uses the proposed pest control extracts of two Peruvian species, Clibadium peruvianum Poepp. (seeds) and Petiveria alliacea L. (leaves). The toxicological effects of the plant extracts were evaluated with D. magna, using five neonates over a period of 24–48 h. A lack of mobility or the absence of heart rhythm for 15 s under a stereomicroscope was considered to indicate mortality. Organic extracts were discarded due to their higher toxicity when compared with the aqueous extracts of C. peruvianum and P. alliacea, which had LC50 = 460.74 mg/L and LC50 = 711.18 mg L−1 at a concentration of 10 mg L−1, respectively. Using this Daphnia-safe concentration, toxicity tests were performed on the third instar larvae of Musca domestica (housefly). Higher activity was observed with an aqueous extract of seeds of C. peruvianum and a leaf aqueous extract of P. alliacea, showing 58.33% and 56.7% mortality against M. domestica, respectively. Both extracts induced abnormal changes in the development of the housefly, causing deformation, burns, and dehydration of tissues in the larvae. It is evident that using D. magna as a preliminary toxicological test allows the determination of concentrations that are safer to use while maintaining the activity of the extracts as a botanical biopesticide, thus posing the lowest risk to the environment, ecosystems, their species, and human health.

Downloads

Download data is not yet available.

References

Ahmed, S., Abdin, Z., & Irfan, M. (2004). Evaluation of some pyrethroids for the control of house fly, Musca domestica L. International Journal of Agriculture and Biology, 6(5), 806–809.

Alvarenga, S. A., Ferreira, M. J., Emerenciano, V. P., & Cabrol-Bass, D. (2001). Chemosystematic studies of natural compounds isolated from Asteraceae: characterization of tribes by principal component analysis. Chemometrics and Intelligent Laboratory Systems, 56, 27–37. https://doi.org/10.1016/S0169-7439(01)00103-4

Ande, A. T. (2001). Biological activities of some plant materials against the housefly-Musca domestica. Journal of the Nigerian Society for Experimental Biology, 1, 293–296.

Arriagada, J. (1995). Notes on Economics plants. Economic Botany, 49, 328–332.

Arriagada, J. (2003). Revision of the genus Clibadium (Asteraceae, Heliantheae). Brittonia, 55(3), 245–301. https://doi.org/10.1663/0007-196X(2003)055[0245:ROTGCA]2.0.CO;2

Assar, A. A., & Abo-Shaeshae, A. A. (2004). Effect of two insect growth regulators, methoxyfenozide and pyriproxyfen on the housefly, Musca domestica vicina (Diptera: Muscidae). Journal of the Egyptian-German Society of Zoology, 44,19–42.

Beltrán, H., Granda, A., León, B., Sagastegui, A., Sánchez, I., & Zapata, M. (2006). Asteraceae endémicas del Perú. Revista Peruana de Biología, 13(2), 64–164. https//doi.org: 10.15381/rpb.v13i2.1807.

Bohm, B. A., & Stuessy, T. F. (1981). Flavonol derivatives of the genus Clibadium (Compositae). Phytochemistry, 20(5), 1053–1055. https://doi.org/10.1016/0031-9422(81)83025-7

Bohm, B. A., & Stuessy, T. F. (1985). Further studies of flavonols of Clibadium (Compositae). Phytochemistry, 24(9), 2134–2136. https://doi.org/10.1016/S0031-9422(00)83144-1

Céspedes, C. L., Salazar, J. R., Martínez, M., & Aranda, E. (2005). Insect growth regulatory effects of some extracts and sterols from Myrtillocactus geometrizans (Cactaceae) against Spodoptera frugiperda and Tenebrio molitor. Phytochemistry, 66(20), 2481–2493. https://doi.org/10.1016/j.phytochem.2005.07.010

Cruz, E. A., Gamboa, A. M., Borges, A. R., & Ruiz, S. E. (2013). Insecticidal effect of plant extracts on immature whitefly Bemisia tabaci Genn. (Hemiptera: Aleyroideae). Electronic Journal of Biotechnology, 16(1), 1–9. DOI: 10.2225/vol16-issue1-fulltext-6 Retrieved from http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v16n1-6

Czerson, H., Bohlmann, F., Stuessy, F., & Fischer, H. (1979). Sesquiterpenoid and acetylenic constituents of seven Clibadium species. Phytochemistry, 18(2), 257–260. https://doi.org/10.1016/0031-9422(79)80065-5

Elkattan, N. A., Ahmed, K. S., Elbermaway, S. M., & Abdel-Gawad, R. M. (2011). Effect of some botanical materials on certain biological aspects of the housefly, Musca domestica L. The Egyptian Journal of Hospital Medicine. 42, 33–48.

Ferreira, M. J., Brant, A. J., Alvarenga, S. A., & Emerenciano, V. P. (2005). Neural networks in chemosystematic studies of Asteraceae: A classification based on a dichotomic approach. Chemistry & Biodiversity. 2, 633–644. https://doi.org/10.1002/cbdv.200590040

Gabriel, U., & Okey, I. (2009). Effect of aqueous leaf extracts of Lepidagathis alopecuroides on the behaviours and mortality of hybrid Catfish (Heterobranchus bidorsalis X Clarias gariepinus) Fingerlings. Research Journal of Applied Science, Engineering and Technology, 1(3), 116–120.

Harada, J. (1992). Allelopathy and fish toxicity of aquatic weeds. International Symposium on Biological Control and Integrated Management of Paddy and Aquatic Weeds in Asia, 305. 19–25 October. Tsukuba, Japan.

ISO International Organization for Standardization. (2012). Water quality. Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea). Acute toxicity test (ISO 6341). Retrieved from https://www.iso.org/standard/54614.html

Khalaf, A. A., Hussein, K. T., & Shoukry, K. K. (2009). Biocidal activity of two botanical volatile oils against the larvae of Synthesiomyia nudiseta (Wulp) (Diptera: Muscidae). Egyptian Academic Journal of Biological Sciences, 2, 89–101.

Khalil, M. S., Assae, A. A., Abo El Mahasen, M. M., & Mahmoud, S. H. (2010). Morphological effects of some insect growth regulators on Musca domestica (Diptera, Muscidae). Egyptian Academic Journal of Biological Sciences, 2, 29–36. https://doi.org/10.21608/EAJBSF.2010.17445

Kristensen, M., & Jespersen, J. B. (2003). Larvicide resistance in Musca domestica (Diptera: Muscidae) population in Denmark and establishment of resistant laboratory strains. Journal of Economic Entomology, 96, 1300–1306. https://doi.org/10.1093/jee/96.4.1300

Kubec, R., Kim, S., & Musah, R. A. (2002). S-Substituted cysteine derivatives and thiosulfinate formation in Petiveria alliacea-part II. Phytochemistry 61(6), 675–680. https://doi.org/10.1016/S0031-9422(02)00328-X

Luz, D. A., Pinheiro, A. M., Silva, M. L., Monteiro, M. C., Prediger, R. D., Ferraz Maia, C. S., & Fontes-Júnior, E. A. (2016). Ethnobotany, phytochemistry and neuropharmacological effects of Petiveria alliacea L. (Phytolaccaceae): A review. Journal of Ethnopharmacology. 185, 182–201. https://doi.org/10.1016/j.jep.2016.02.053

Magalhães, L. A., Lima, M., Marques, M. O., Facanali, R., Pinto, A. C., & Tadei, W. P. (2010). Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules, 15, 5734–5741. https://doi.org/10.3390/molecules15085734

Mansour, S. A., Abdel-Hamid, A. A., Ibrahim, A. W., Mahmoud, N. H., & Moselhy, W. A. (2015). Toxicity of some pesticides, heavy metals and their mixtures to Vibrio fischeri bacteria and Daphnia magna: Comparative Study. Journal of Biology and Life Science, 6, 221–240. http://dx.doi.org/10.5296/jbls.v6i2.8174

Nivsarkar, M., Cherian, B., & Padh, H. (2001). Alpha-terthienyl: A plant-derived new generation insecticide. Current Science, 81, 667–672.

OECD (2004). Test No. 202: Daphnia sp. Acute Immobilisation Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris. https://doi.org/10.1787/9789264069947-en

Pérez, G., Bracho, J. C., & Vásquez, J. A. (2012). Efeito inseticida de Clibadium peruvianum sobre Musca domestica, e a sua composição química. XXIV Congresso Brasileiro de Entomología, 16. Curitiba-Paraná, 2012. Brasil.

Pérez, M. C., Muñoz, V. A., Noyola, A., & García, F. (2006). Essential oil and phototoxic compounds in Clibadium surinamense L. and Montanoa grandiflora D.C. (Asteraceae). Phyton, International Journal of Experimental Botany, 75, 145–150.

Pohlit, A. M., Rezende, A. R., Lopes, E. L., Lopes, N. P., & Neto, V. F. (2011). Plant extracts, isolated phytochemicals, and plant-derived agents, which are lethal to arthropod vectors of Human tropical diseases: a review. Planta Medica, 77, 618–630. https://doi.org/10.1055/s-0030-1270949

Qi, S., Wang, D., Zhu, L., Teng, M., Wang, C., Xue, X., & Wu, L. (2018). Neonicotinoid insecticides imidacloprid, guadipyr, and cycloxaprid induce acute oxidative stress in Daphnia magna. Ecotoxicology Environmental Safety, 148, 352–358. https://doi.org/10.1016/j.ecoenv.2017.10.042

Raal, A., Kaur, H., Orav, A., Arak, E., Kailas, T., & Muurisepp, M. (2011). Content and composition of essential oils in some Asteraceae species. Proceedings of the Estonian Academy of Sciences, 60, 55–63.

Rosado, A. J., Aguilar, C. A., Rodríguez, V. R., Borges, A. R., García, V. Z., & Méndez, G. M. (2010). Acaricidal activity of extracts from Petiveria alliacea (Phytolaccaceae) against the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Veterinary Parasitology, 168(3–4), 299–303.

Sripongpun, G. (2008). Contact toxicity of the crude extract of Chinese star anise fruits to house fly larvae and their development. Songklanakarin Journal of Science and Technology, 30(5), 667–672. Retrieved from http://rdo.psu.ac.th/sjst/journal/30-5/0125-3395-30-5-667-672.pdf

Taşkin, V., Kence, M., & Göçmen, B. (2004). Determination of malathion and diazinon resistance by sequencing the MdαE7 gene from Guatemala, Colombia, Manhattan, and Thailand housefly (Musca domestica L.) Strains. Russian Journal of Genetics, 40, 377–380.

Torres, P., Ávila, J. G., Romo de Vivar, A., García, A. M., Marín, J. C., Aranda, E., Céspedes, C. L. (2003). Antioxidant and insect growth regulatory activities of stilbenes and extracts from Yucca periculosa. Phytochemistry, 64(2), 463–473. https://doi.org/10.1016/S0031-9422(03)00348-0

Urzúa, A., Santander, R., Echeverría, J., Cabezas, N., Palacios, S. M., & Rossi, Y. (2010a). Insecticide properties of the essential oils from Haplopappus foliosus and Bahia ambrosoides against the housefly, Musca domestica L. Journal of the Chilean Chemical Society, 55, 392–395. http://dx.doi.org/10.4067/S0717-97072010000300026

Urzúa, A., Santander, R., Echeverría, J., Villalobos, C., Palacios, S. M., & Rossi, Y. (2010b). Insecticidal properties of Peumus boldus Mol. essential oil on the house fly, Musca domestica. Latin American and Caribbean Bulletin of Medicinal and Aromatic Plants, 9, 465–469.

USEPA. (2002). Method 2021.0: Daphnia pulex and D. magna Acute Toxicity Tests with Effluents and Receiving Waters in: Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Fifth ed., EPA Volume 821-R-02-012.

Vásquez, J. A., de Baptista, G. C., Trevizan, L. R., & Gadanha, C. D. (2008). Fenitrothion and esfenvalerate stability during corn and wheat sample processing. Scientia Agricola, 65, 157–160. http://dx.doi.org/10.1590/S0103-90162008000200008

Williams, L. A., Rosner, H., Levy, H. G., & Barton, E. N. (2007). A critical review of the therapeutic potential of dibenzyl trisulphide isolated from Petiveria alliacea L. (guinea hen weed, anamu). West Indian medical Journal, 56(1), 17–21.

Wang, J., Li, Y., & Lei, CL. (2005). The repellency and fumigant activity of Artemisia vulgaris essential oil to Musca Domestica Vicina. Chinese Bulletin of Entomology, 42(1), 51–53.

Youssef, N. S. (1997). Toxic and synergistic properties of several volatile oils against larvae of the house fly, Musca domestica vicina maquart (Diptera: Muscidae). Journal of the Egyptian-German Society of Zoology, 22, 131–149.

Zar, J. H. 1996. Biostatistical analysis. Prentice-Hall. Inc. Upper Saddle River. New Jersey, USA.

Downloads

Published

2019-12-30

How to Cite

Bracho-Pérez, J., Tacza-Valverde, I., & Vásquez-Castro, J. (2019). Peruvian Botanical Biopesticides for Sustainable Development and Protection of the Environment. Peruvian Journal of Agronomy, 3(3), 126-133. https://doi.org/10.21704/pja.v3i3.1206