Yield of five potato varieties in Temporary Immersion Bioreactors (TIB)

Authors

  • A. Carrión Instituto de Biotecnología, Universidad Nacional Agraria La Molina, Av. La Universidad S/N, Lima, Perú.
  • M. de L. Tapia

DOI:

https://doi.org/10.21704/pja.v3i1.1281

Keywords:

Microtubers, prebasic seed, temporary immersion bioreactors.

Abstract

The potato (Solanum tuberosum L.) is important as both a food and a source of economic activity in Peru. However, potato production is limited by seed quality and other biotic and abiotic factors. We explore a new alternative method for producing prebasic seeds of Peruvian potato varieties known as temporary immersion bioreactors (BIT). The process of producing potato microtubers using BIT consists of two phases: proliferation and microtuberization. During the proliferation phase, we seeded six nodal segments of three nodes in a liquid culture medium with 30 g of sucrose under a photoperiod of 16 light hours and eight dark hours. This phase also included an irrigation cycle of five minutes every three hours for 30 days. During the microtuberization phase, the conditions were changed to a medium with 80 g of sucrose in darkness, and the same irrigation cycle was used for 60 days. Under these conditions we obtained 20, 18.4, 13.4, 13.4, and 4.6 microtubers of the varieties Peruanita, Canchan, Capiro, Unica, and Yungay, respectively.

Downloads

Download data is not yet available.

References

Ali, S., Khan, N., Nouroz, F., Erum, S., & Nasim, W. (2018). Effects of sucrose and growth regulators on the microtuberization of cip potato (Solanum tuberosum) germplasm. Pakistan Journal of Botany, 50(2), 763–768.

Araque, E., Bohórquez, M, Díaz, P., Estiben, J., Correa, L., Urquijo, J., Castañeda, S., & Pacheco, J. (2018). Propagación y tuberización in vitro de dos variedades de papa. Ciencia en Desarrollo, 9(1), 21–31.

Casas, A., Kononowicz, B., Zehr, D., Tomes, J., Axtell, L., Butler, G., & Rbressan, R. (1993). Transgenic sorghum plants via microprojectile bombardment. Proceedings of the National Academy of Sciences. USA. 90, 11212–11216.

Castro, A. (2011). Microtuberización in vitro de Solanum tuberosum L. “papa” de los cultivares Canchán y Capiro, en un sistema automatizado de inmersión temporal. Thesis (Mag Sc) 96 p. 18 cuadros, 5 fig., 82 ref. Impreso: Lima (Peru) UNALM 2011.

Del Rio, AH, C Obregon, JB Bamberg, J Petrick, R Bula, & F. De La Calle. (2017). “Validation of high-quality potato seed production protocol under controlled conditions (CETS System) in cultivated potato species (Solanum tuberosum L.).”. Latin American Potato Magazine. 21(2):71-78

Dobránszki, J., Magyar-Tábori, K., & Hudák, I. (2008). In vitro tuberization in hormone-free systems on solidified medium and dormancy of potato microtubers. Fruit, Vegetable and Cereal Science and Biotechnology, 2: 82–94. http://www.globalsciencebooks.info/Online/GSBOnline/images/0812/FVCSB_2(SI1)/FVCSB_2(SI1)82-94o.pdf

Egúsquiza, BR. (2014). La papa en el Perú. Universidad Nacional Agraria La Molina, Perú.

Elaleem, K. G. A., Modawi, R. S., & Khalafalla, M. M. (2015). Microtuber induction of two potato (Solanum tuberosum L.) varieties namely, Almera and Diamant. International Research Journal of Biological Sciences, 4(3), 84–89. http://www.isca.in/IJBS/Archive/v4/i3/15.ISCA-IRJBS-2015-010.php

Escalona, M., Lorenzo, J.C., González, B., Daquinta, M., González, J.L., Desjardins, Y., & Borroto, C.G. (1999). ‘Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems’, Plant Cell Reports, 18(9), 743–748.

Espinoza, N., Lizárraga, R., Siguenas, C., Buitrón, F. & Dodds, J. H. (1992). “Cultivo de tejidos: Micropropagación, conservación y exportación de germoplasma de papa.” Lima, Peru. CIP.

FAOSTAT (2015) The top 5 countries that produce the most potatoes. Available in: http://www.potato2008.org [18/01/2017]

García, J., & Azofeifa, J. (2017). Response to Boric Acid and Light in the Number and Biomass of Potato Microtubers Cv. “Floresta.” Uniciencia, 31(2), 121–131.

Islam, M., Roni, M., Jamal, A, & Shimasaki, K. (2017). Tracing the role of sucrose in potato microtuber formation ‘in vitro’. Plant Omics, 10(1), 15.

Khalil, M., El Aal, A., & Samy, M. (2017). Studies on Microtuberization of Five Potato Genotypes. Egypt Journal of Horticulture, 44(1), 91–97.

Mani, F., Mhamdi, M., Bettaieb, T., & Hannachi, C. (2014). Shoot regeneration, micropropagation and microtuberization of potato (Solanum tuberosum L.) cultivars. Journal of New Sciences, 7(2), 10-18.

Naik, P.S, & Buckseth, T. (2018). Recent advances in virus elimination and tissue culture for quality potato seed production. In S.S. Gosal & S.H. Wani (Eds.), Biotechnologies of Crop Improvement, Volume 1. Cellular Approaches. Springer.

Park, S., Jeon, J., Kim, H., Hong, S., Aswath, C., & Joung, H. (2009). The effect of size and quality of potato microtubers on quality of seed potatoes in the cultivar ‘Superior’. Scientia horticulturae, 120(1), 127–129.

Pérez, N., Jiménez, E., Feria, M., Capote, A., Barbón, R., Quiala, E., & Chávez, M. (2007). Potato microtubers using a temporary immersion system: Inoculum density, immersion time and field studies. Biotecnologia vegetal 7(3), 149–154.

Pumisutapon, P., & Topoonyanont, N. (2015). Moderate-abiotic stress increase in vitro tuberization and microtuber growth of potato. VI International Symposium on Production and Establishment of Micropropagated Plants, 1155, 215–220.

Downloads

Published

2019-04-30

How to Cite

Carrión, A., & Tapia, M. de L. (2019). Yield of five potato varieties in Temporary Immersion Bioreactors (TIB). Peruvian Journal of Agronomy, 3(1), 24-28. https://doi.org/10.21704/pja.v3i1.1281

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>