Dissipation of fenitrothion and esfenvalerate in wheat grains, bran and flour

Authors

  • J. Vásquez-Castro Universidad Nacional Agraria La Molina, Departamento de Entomología, Facultad de Agronomía, Av. La Molina s/n, Lima 12, Peru.
  • G. De Baptista Universidade de São Paulo (USP), Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz”, Av. Pádua Dias 11, São Paulo, Brazil.
  • C. Gadanha-Junior Universidade de São Paulo (USP), Departamento de Engenharia de Biossistemas, Escola Superior de Agricultura “Luiz de Queiroz”, Av. Pádua Dias 11, São Paulo, Brazil.
  • J. Bracho-Pérez Universidad Nacional Tecnológica de Lima Sur. Facultad de Ingeniería y Gestión. Campus - Sector 3 Grupo 1A 03 - Cercado (Av. Central y Av. Bolívar) - Villa El Salvador, Lima 42, Peru.

DOI:

https://doi.org/10.21704/pja.v4i2.1510

Keywords:

Degradation, persistence, chromatography, maximum residue limit, preharvest interval.

Abstract

Chemical insecticides are commonly used to control insect pests in stored wheat. However, the presence of insecticide residues in food may endanger consumers. We studied the degradation and persistence of two insecticides, fenitrothion and esfenvalerate, in wheat grain, bran, and flour. The application system was calibrated to treat grain at theoretical concentrations of 10 and 0.5 mg kg−1 of fenitrothion and esfenvalerate, respectively. Samples treated with the insecticide mixture were collected at 0, 15, 30, 60, 90, 120, 180, 240, and 360 days after treatment. Samples were analyzed quantitatively by gas chromatography with an electron capture detector (ECD, Ni63). The experimental design was completely randomized with three replicates. Esfenvalerate was more persistent than fenitrothion, with the residues of both insecticides concentrated mainly in the bran, and with least amounts in the flour. The concentrations of fenitrothion residues during the 120-day preharvest interval exceeded the maximum residue limit (MRL) of 1 mg kg−1 set by Brazilian legislation. We discuss the factors that influence the degradation/persistence of fenitrothion and esfenvalerate.

Downloads

Download data is not yet available.

References

Afridi, I.A.K., Parveen, Z. & Masud, S.Z. (2001). Stability of organophosphate and pyretroid pesticide on wheat in storage. Journal of Stored Products Research, 37, 199–204. https://doi.org/10.1016/S0022-474X(00)00020-5

Agência Nacional De Vigilância Sanitária. (2019). Regularização de produtos agrotóxicos.

Arthur, F.H. (1992). Efficacy of chlorpyrifos-methyl for control of maize weevils (Coleoptera: Curculionidae) and red flour beetles (Tenebrionidae) in mixtures of treated and untreated corn, Journal of Economic Entomology, 85, 554–560. http://doi.org/10.1093/jee/85.2.554

Arthur, F.H., Throne, J.E. & Simonaitis, R.A. (1991). Chlorpyrifos-methyl degradation and biological efficacy toward maize weevils (Coleoptera: Curculionidae) on corn stored at four temperatures and three moisture contents. Journal of Economic Entomology, 84, 1926–1932. http://doi.org/10.1093/jee/84.6.1926

Bajwa, U. & Sandhu, K.S. (2014). Effect of handling and processing on pesticide residues in food–a review. Journal of Food Science and Technology, 51, 201–220. http://doi.org/10.1007/s13197-011-0499-5

Barbosa, L.C.A. (2004). Os pesticidas, o homem e o meio ambiente. Editorial Universidade Federal de Viçosa, Viçosa, Brasil. 215 pp.

Dordevic, T. & Durovic-Pejcev, R.D. (2016). The potency of Saccharomyces cerevisiae and Lactobacillus plantarum to dissipate organophosphorus pesticides in wheat during fermentation. Journal of Food Science and Technology, 53, 4205–4215 http://doi.org/10.1007/s13197-016-2408-4

Environmental Protection Agency Office of Pesticide Programs. (2012). Index to pesticide chemical names, part 180 tolerance information, and food and feed commodities (by commodity). United States. https://www.epa.gov/sites/production/files/2015-01/documents/tolerances-commodity.pdf

Food and Agriculture Organization of the United Nations. (2019). Codex alimentarius. Indice de plaguicidas. http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticides/es/

Farha, W., El-Aty, A.M.A., Rahman, Md.M., Shin, H. & Shim, J. (2016). An overview on common aspects influencing the dissipation pattern of pesticides: a review. Environmental Monitoring and Assessment, 188, 693. http://doi.org/10.1007/s10661-016-5709-1

González-Curbelo, M.A., Socas-Rodriguez, B., Herrero, M., Herrera-Herrera, A.V. & Hernández-Borges, J. (2017). Dissipation kinetics of organophosphorus pesticides in milled toasted maize and wheat flour (gofio) during storage. Food Chemistry, 229, 854–859. http://doi.org/10.1016/j.foodchem.2017.02.148

Gragasin, Ma., Cristina, B., Acda, M.A., Gibe, A.G. & Sayaboc, P.D. (1994). Residues of grain protectants on paddy. In: Proceedings of the 6th International Working Conference on Stored Product Protection, Canberra, Australia. (pp. 782–784).

Holland, P.T., Hamilton, D., Ohlin, B. & Skidmore, M.W. (1994). Effects of storage and processing on pesticide residues in plant products. Pure & Applied Chemistry, 66(2), 335–356. https://doi.org/10.1351/pac199466020335

Joia, B.S., Webster, G.R.B. & Loschiavo, S.R. (1985). Cypermethrin and fenvalerate residues in stored wheat and milled fractions. Journal of Agricultural and Food Chemistry, 33(4), 618–622. http://doi.org/10.1021/jf00064a013

Miike, L.H., Fustaino, M.L.S. & Paulo, A.D. (2002). Tecnologia de aplicação de inseticidas preventivos nos grãos. In, Lorini, D., Miike, L.H. & Scussel, V.M. (Eds.) Armazenagem de grãos. Instituto Bio Geneziz, Campinas, Brasil. (pp. 27–53).

Minett, W. & Williams, P. (1976). Assesment of non-uniform malathion distribution for insect control in a commercial wheat silo. Journal of Stored Products Research, 12(1), 27–33. http://doi.org/10.1016/0022-474X(76)90019-9

Ministério da Agricultura, do Abastecimento e da Reforma Agrária (1992). Regras para análise de sementes. Departamento Nacional de Produção Vegetal. Divisão de Sementes e Mudas. Brasília, Brasil. 363 pp.

Papadopoulou-Mourkidou, E. & Tomazou, T. (1991). Persistence and activity of permethrin in stored wheat and its residues in wheat milling fractions. Journal of Stored Products Research, 27, 249–254. http://doi.org/10.1016/0022-474X(91)90008-Z

Resolução RE n0 347 (2004). Dispõe sobre as mudanças de emprego, limite máximo de resíduos e período de carência do fenitrotion. Diário Oficial, Brasília, Brasil. Seção 7, p. 48. de 22 de novembro de 2004.

Rowlands, D.G. (1967). The metabolism of contact insecticides in stored grains. Residue Review, 17, 105–177.

Rowlands, D.G. (1971). The metabolism of contact insecticides in stored grains. II. 1966-1969. Residue Review, 34, 91–161.

Rumbos, C.I., Dutton, A.C., Tsiropoulos, N.G. & Athanassiou, C.G. (2018). Persistance and residual toxicity of two pirimiphos-methyl formulations on wheat against three stored-product pests. Journal of Stored Products Research, 76, 14–21. http://doi.org/10.1016/j.jspr.2017.10.011

Samson, P.R., Parker, R.J. & Jones, A.L. (1988). Comparative effect of grain moisture on the biological activity of protectants on stored corn. Journal of Economic Entomology, 81(3), 949–954. http://doi.org/10.1093/jee/81.3.949

SAS Institute. (1999). SAS/STAT User’s guide 8.0. Cary, USA. NC: SAS Institute Inc.

Seiber, J.N. (1999). Extraction, cleanup, and fractionation methods. In Winefordner, J.D. (Ed.). Pesticide residues in foods: methods, techniques, and regulations. John Wiley, New York, USA. (pp. 17–61).

Sgarbiero, E., Trevizan, L.R.P. & de Baptista, G.C. (2003). Pirimiphos-methyl residues in corn and popcorn grains and some of their processed products and the insecticide action on the control of Sitophilus zeamais Mots. (Coleoptera: Curculionidae). Neotropical Entomology, 32(4), 707–711. http://doi.org/10.1590/S1519-566X2003000400024

Sumner, P.E. (2012). Sprayer nozzle selection. The University of Georgia. https://secure.caes.uga.edu/extension/publications/files/pdf/B%201158_3.PDF

Tomlin, C. (1995). The pesticide manual. 10th ed. The Bath Press. Cambridge, UK. 1341 pp.

Trevizan, L.R.P. and Baptista, G.C. (2000). Resíduos de deltametrina em grãos de trigo e em seus produtos processados, determinados por cromatografia gasosa. Scientia Agricola, 57(2), 199–203. http://doi.org/10.1590/S0103-90162000000200002

Valcke, M., Bourgault, M., Rochette, L., Normandin, L., Samuel, O., Belleville, D., Blanchet, C. and Phaneuf, D. (2017). Human health risk assessment on the consumption of fruits and vegetables containing residual pesticides: A cancer and non-cancer risk/benefit perspective. Environment International, 108, 63-74. https://doi.org/10.1016/j.envint.2017.07.023

Vásquez-Castro, J.A., De Baptista, G.C., Gadanha Jr, C.D. & Trevizan, L.R.P. (2007). Influence of emulsiable concentrate formulation on the physical properties of the fluid spray characteristics and insecticides deposits on stored grains. Journal of Agricultural and Food Chemistry, 55, 3529–3534. http://doi.org/10.1021/jf063225n

Vásquez-Castro, J.A., De Baptista, G.C., Gadanha Jr., C.D. & Trevizan, L.R.P. (2012). Insecticidal effect and residual action of Fenitrothion and Esfenvalerate on Sitophilus oryzae and S. zeamais (Coleoptera: Curculionidae) in stored maize and wheat. ISRN Agronomy, 2012, 1–11.

Watanabe, M., Noguchi, M., Hashimoto, T. & Yoshida, S. (2018). Chlorpyriphos-methyl, Pirimiphos-metyl and Fenitrothion residues in commercial wheat products. Food Hygiene and Safety Science, 59, 228–233. http://doi.org/10.3358/shokueishi.59.228

Yu, Ch., Li, Y., Zhang, Q., Zou, N., Gu, K., Li, X. & Pan, C. (2014). Decrease of Pirimiphos-methyl and Deltamethrin residues in stored rice with post-harvest treatment. International Journal of Environmental Research and Public Health, 11, 5372–5381. http://doi.org/10.3390/ijerph110505372

Downloads

Published

2020-08-30

How to Cite

Vásquez-Castro, J., De Baptista, G., Gadanha-Junior, C., & Bracho-Pérez, J. (2020). Dissipation of fenitrothion and esfenvalerate in wheat grains, bran and flour. Peruvian Journal of Agronomy, 4(2), 40-47. https://doi.org/10.21704/pja.v4i2.1510