THE AMAZING COLORS OF PERUVIAN BIODIVERSITY: SELECT PERUVIAN PLANTS FOR USE AS FOOD COLORANTS
DOI:
https://doi.org/10.21704/ac.v83i1.1888Palabras clave:
colores sorprendentes, biodiversidad, plantas peruanas, colorantes alimentariosResumen
La creciente demanda de los consumidores de alimentos más nutritivos, ingredientes de origen natural y etiquetas más limpias está empujando a las industrias de alimentos y cosméticos a pasar del uso de colorantes artificiales a alternativas de origen natural. En este contexto, la industria busca continuamente fuentes de colorantes más estables, con especial interés en las fuentes vegetales. La vibrante biodiversidad que se encuentra en el Perú representa una emocionante oportunidad económica. En esta revisión, destacamos cultivos peruanos seleccionados con excelente potencial para su uso como fuentes de colorantes para aplicaciones industriales, con algunas fuentes que se estudian ampliamente y otras que reciben atención en años más recientes. El maíz morado, un cultivo nativo de la región de los Andes, es una rica fuente de pigmentos con gran estabilidad y una larga historia de uso en diferentes aplicaciones alrededor del mundo. Las papas de pulpa coloreada, cultivos andinos subutilizados, pueden expresar diferentes colores debido a sus perfiles de pigmentos variados. Sauco, la baya del saúco peruana, tiene una fuerte actividad antioxidante y un perfil de pigmento único que le da su característico color negro-púrpura. Las especies de Berberis, una clase diversa de arbustos con bayas altamente pigmentadas, se pueden usar directamente como aditivos de color sin necesidad de procedimientos de extracción. Huito, una fruta poco estudiada originaria del Amazonas es naturalmente incolora, pero puede volverse azul cuando se expone al oxígeno o a los aminoácidos y puede expresar diferentes tonalidades según la fuente del grupo de aminas primarias. En general, el maíz morado, las papas de pulpa coloreada, el sauco, las especies de Berberis y el huito son fuentes peruanas prometedoras de colorantes naturales para aplicaciones alimentarias y cosméticas debido a su versatilidad, estabilidad y atractivas características de color.
Descargas
Referencias
• AGAP. (2017). Peru exportó más de US$645 mil de maíz morado. Available from: https://agapperu.org/peru-exporto-mas-us-645-mil-maiz-morado/ Accessed on June 22, 2022.
• Ahmadiani, N., Robbins, R. J., Collins, T. M., & Giusti, M. M. (2014). Anthocyanins contents, profiles, and color characteristics of red cabbage extracts from different cultivars and maturity stages. Journal of Agricultural and Food Chemistry, 62(30), 7524–7531.
• Applequist, W. L. (2013). A brief review of recent controversies in the taxonomy and nomenclature of Sambucus nigra sensu lato. In I International Symposium on Elderberry 1061 (pp. 25–33).
• Aoki, H., Kuze, N., Kato, Y., & Gen, S. E. (2002). Anthocyanins isolated from purple corn (Zea mays L.). Foods and Food Ingredients Journal of Japan, 41–45.
• Bellé, A.S., Hackenhaar, C.R., Spolidoro, L.S., Rodrigues, E., Klein, M.P., & Hertz, P.F. (2018). Efficient enzyme-assisted extraction of genipin from genipap (Genipa americana L.) and its application as a crosslinker for chitosan gels. Food Chemistry, 246, 266–274.
• Bentes, A.D., Souza, H.A., Amaya-Farfan, J., Lopes, A.S., & Faria, L.J. (2014). Influence of the composition of unripe genipap (Genipa americana L.) fruit on the formation of blue pigment. Journal of Food Science and Technology, 52(6), 3919–3924.
• Bentes, A.D., & Mercadante, A.Z. (2014). Influence of the Stage of Ripeness on the Composition of Iridoids and Phenolic Compounds in Genipap (Genipa americana L.). Journal of Agricultural and Food Chemistry, 62(44), 10800–10808.
• Bolli, R. (1994). Revision of the genus Sambucus. Dissertationes botanicae 223. J. Cramer, 256.
• Brauch, J. (2016). Underutilized Fruits and Vegetables as Potential Novel Pigment Sources. Handbook on Natural Pigments in Food & Beverages, 305–335.
• Brauch, J., Zapata-Porras, S., Buchweitz, M., Aschoff, J., & Carle, R. (2016). Jagua blue derived from Genipa americana L. fruit: A natural alternative to commonly used blue food colorants? Food Research International, 89, 391–398.
• Brown, C. R. (2005). Antioxidants in potato. American Journal of Potato Research, 82(2), 163–172.
• Burlingame, B., Mouillé, B., & Charrondiére, R. (2009). Nutrients, bioactive non-nutrients and anti-nutrients in potatoes. Journal of Food Composition and Analysis, 22(6), 494–502
• Cano, E.V., Echeverri Lopez, L.F., Gil Romero, J.F., Correa Garcés, E.A., & Zapata Porras, S.P. (2019). U.S. Patent No. US 10,266,698 B2. Washington, DC: U.S. Patent and Trademark Office.
• Cevallos-Casals, B. A., & Cisneros-Zevallos, L. (2003). Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweet potato. Journal of Agricultural and Food Chemistry, 51(11), 3313–3319.
• Chatham, L. A., Howard, J. E., & Juvik, J. A. (2020). A natural colorant system from corn: Flavone-anthocyanin copigmentation for altered hues and improved shelf life. Food Chemistry, 310, 125734.
• Chatham, L. A., West, L., Berhow, M. A., Vermillion, K. E., & Juvik, J. A. (2018). Unique flavanol-anthocyanin condensed forms in Apache red purple corn. Journal of Agricultural and Food Chemistry, 66(41), 10844–10854.
• Cho, Y.J., Kim, S.Y., Kim, J., Choe, E.K., Kim, S.I., & Shin, H.J. (2006). One-step enzymatic synthesis of blue pigments from geniposide for fabric dyeing. Biotechnology and Bioprocess Engineering, 11(3), 230–234.
• Cobo, Bernabé. (1653). Historia del Nuevo Mundo. Book V, Chapter LXIII, p. 501. in E. Yacovleff, F. L. Herrera, El mundo vegetal de los antiguos peruanos, Revista del Museo Nacional, Tomo IV No. 1, 1er semestre 1935.
• Cuevas Montilla, E., Hillebrand, S., Antezana, A., & Winterhalter, P. (2011). Soluble and bound phenolic compounds in different Bolivian purple corn (Zea mays L.) cultivars. Journal of Agricultural and Food Chemistry, 59(13), 7068–7074.
• De Nisi, P., Borlini, G., Parizad, P. A., Scarafoni, A., Sandroni, P., Cassani, E., Adani, F.; & Pilu, R. (2021). Biorefinery approach applied to the valorization of purple corn cobs. ACS Sustainable Chemistry & Engineering, 9(10), 3781–3791.
• De Pascual‐Teresa, S., Santos‐Buelga, C., & Rivas‐Gonzalo, J. C. (2002). LC–MS analysis of anthocyanins from purple corn cob. Journal of the Science of Food and Agriculture, 82(9), 1003–1006.
• Del Carpio-Jiménez, C. (2021). Colorantes naturales antociánicos extraídos de frutos de Berberis humbertiana y Berberis boliviana para su uso en yogures. Revista de la Sociedad Química del Perú, 87(4), 321–331.
• Del Carpio-Jiménez, C., Flores, C. S., He, J., Tian, Q., Schwartz, S. J., & Giusti, M. M. (2011). Characterisation and preliminary bioactivity determination of Berberis boliviana Lechler fruit anthocyanins. Food Chemistry, 128(3), 717–724.
• Eichhorn, S., & Winterhalter, P. (2005). Anthocyanins from pigmented potato (Solanum tuberosum L.) varieties. Food Research International, 38(8), 943–948.
• Ezekiel, R., Singh, N., Sharma, S., & Kaur, A. (2013). Beneficial phytochemicals in potato—a review. Food Research International, 50(2), 487–496
• FAO. (2009). International Year of the Potato 2008—The Potato. Food and Agriculture Organization of the United Nations. Available from http://www.fao.org/potato-2008/en/potato/ Accessed on March 15, 2017.
• FAO (2013). Traditional High Andean Cuisine: Allin Mikuy / Sumak Mikuy, 1st ed. Food and Agriculture Organization of the United Nations.
• Francis, J.K. (1993). Genipa americana L. Jagua, genipa. Rubiaceae. Madder family. New Orleans, LA: USDA Forest Service, International Institute of Tropical Forestry 5 p. (SO-ITF-SM; 58).
• Giusti, M. M., Polit, M. F., Ayvaz, H., Tay, D., & Manrique, I. (2014). Characterization and quantitation of anthocyanins and other phenolics in native Andean potatoes. Journal of Agricultural and Food Chemistry, 62(19), 4408–4416.
• González-Manzano, S., Pérez-Alonso, J. J., Salinas-Moreno, Y., Mateus, N., Silva, A. M., de Freitas, V., & Santos-Buelga, C. (2008). Flavanol–anthocyanin pigments in corn: NMR characterisation and presence in different purple corn varieties. Journal of Food Composition and Analysis, 21(7), 521–526.
• González-Paramás, A. M., da Silva, F. L., Martín-López, P., Macz-Pop, G., González-Manzano, S., Alcalde-Eon, C., Perez-Alonso, J. J., Escribano-Bailon, M. T., Rivas-Gonzalo, J. C., & Santos-Buelga, C. (2006). Flavanol–anthocyanin condensed pigments in plant extracts. Food Chemistry, 94(3), 428–436.
• Grotewold, E. (2005). Plant metabolic diversity: a regulatory perspective. Trends in plant science, 10(2), 57–62.
• Grotewold, E., Drummond, B. J., Bowen, B., & Peterson, T. (1994). The myb-homologous P gene controls phlobaphene pigmentation in maize floral organs by directly activating a flavonoid biosynthetic gene subset. Cell, 76(3), 543–553.
• Haggard, S., Luna-Vital, D., West, L., Juvik, J. A., Chatham, L., Paulsmeyer, M., & de Mejia, E. G. (2018). Comparison of chemical, color stability, and phenolic composition from pericarp of nine colored corn unique varieties in a beverage model. Food Research International, 105, 286–297.
• Hamouz, K., Lachman, J., Pazderů, K., Tomášek, K., Hejtmánková, K., & Pivec, V. (2011). Differences in anthocyanin content and antioxidant activity of potato tubers with different flesh colour. Plant, Soil and Environment, 57(10), 478–485
• Hawkes, J. G. (1992). History of the potato. In The potato crop (pp. 1–12). Springer, Dordrecht.
• Hendley, M. (2006). Iberia and the Americas: culture, politics, and history: a multidisciplinary encyclopedia. Reference & User Services Quarterly, 46(2), 90.
• Hillebrand, S., Naumann, H., Kitzinski, N., Köhler, N. & Winterhalter, P. (2009). Isolation and Characterization of Anthocyanins from Blue-fleshed Potatoes (Solanum tuberosum L.). Food, 3(1), 96–101.
• Jing, P. & Giusti, M. M. (2005). Characterization of anthocyanin-rich waste from purple corncobs (Zea mays L.) and its application to color milk. Journal of Agricultural and Food Chemistry, 53(22), 8775–8781.
• Jing, P. & Giusti, M. M. (2007). Effects of extraction conditions on improving the yield and quality of an anthocyanin‐rich purple corn (Zea mays L.) color extract. Journal of Food Science, 72(7), C363–C368.
• Johnson, J. L., Dzendolet, E., Damon, R., Sawyer, M., & Clydesdale, F. M. (1982). Psychophysical relationships between perceived sweetness and color in cherry-flavored beverages. Journal of Food Protection, 45(7), 601–606.
• Kaspar, K. L., Park, J. S., Brown, C. R., Weller, K., Ross, C. F., Mathison, B. D., & Chew, B. P. (2013). Sensory Evaluation of Pigmented Flesh Potatoes (Solanum tuberosum L.). Food and Nutrition Sciences, 4, 77–81
• Khosroukhavar, R., Ahmadiani, A., & Shamsa, F. (2010). Antihistaminic and anticholinergic activity of methanolic extract of barberry fruit (Berberis vulgaris) in the guinea-pig ileum. Journal of Medicinal Plants, 9(35), 99–105.
• Kobylewski, S., & Jacobson, M. F. (2012). Toxicology of food dyes. International Journal of Occupational and Environmental Health, 18(3), 220–46.
• Kulling, S. E. & Rawel, H. M. (2008). Chokeberry (Aronia melanocarpa) - A review on the characteristic components and potential health effects. Planta Medica. 74, 1625–1634.
• Lachman, J., & Hamouz, K. (2005). Red- and purple-coloured potatoes as a significant antioxidant source in human nutrition—a review. Plant, Soil and Environment, 51(11), 477–482.
• Lachman, J., Hamouz, K., Šulc, M., Orsák. M., Pivec, V., Hejtmánková, A., Dvořák, P. & Čepl, J. (2009). Cultivar differences of total anthocyanins and anthocyanidins in red and purple-fleshed potatoes and their relation to antioxidant activity. Food Chemistry, 114(3), 836–843
• Lachman, J., Hamouz, K., Orsák, M., Pivec, V., & Dvořák P. (2008). The influence of flesh colour and growing locality on polyphenolic content and antioxidant activity in potatoes. Scientia Horticulturae, 117(2), 109–114.
• Lao, F. & Giusti, M. M. (2016). Quantification of Purple Corn (Zea Mays L.) Anthocyanins Using Spectrophotometric and HPLC Approaches: Method Comparison and Correlation.” Food Analytical Methods 9(5): 1367–80
• Lao, F. & Giusti, M. M. (2018). Extraction of Purple Corn (Zea Mays L.) Cob Pigments and Phenolic Compounds Using Food-Friendly Solvents. Journal of Cereal Science 80, 87–93.
• Lee, S., Lim, J., Bhoo, S., Paik, Y., & Hahn, T. (2003). Colorimetric determination of amino acids using genipin from Gardenia jasminoides. Analytica Chimica Acta, 480(2), 267–274.
• Lee, E.A. & Harper, V. (2002). Suppressor of pericarp pigmentation 1 (spp1), a novel gene involved in phlobaphene accumulation in maize (Zea mays L.) pericarps. Maydica 47, 51–58.
• Lewis, C.E., Walker, J. R. L., Lancaster, J. E., & Sutton, K. H. (1998). Determination of anthocyanins, flavonoids and phenolic acids in potatoes. I: Coloured cultivars of Solanum tuberosum L. Journal of the Science of Food and Agriculture, 77(1), 45–57.
• Li, H., Deng, Z., Zhu, H., Hu, C., Liu, R., Young, J. C., & Tsao, R. (2012). Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Research International, 46(1), 250–259.
• Li, C. Y., Kim, H. W., Won, S. R., Min, H. K., Park, K. J., Park, J. Y., Ahn, M. S. & Rhee, H. I. (2008). Corn husk as a potential source of anthocyanins. Journal of Agricultural and Food Chemistry, 56(23), 11413–11416.
• Luna-Vital, D., Li, Q., West, L., West, M., & de Mejia, E. G. (2017). Anthocyanin condensed forms do not affect color or chemical stability of purple corn pericarp extracts stored under different pHs. Food Chemistry, 232, 639–647.
• McCann, D., Barrett, A., Cooper, A., Crumpler, D., Dalen, L., Grimshaw, K., Kitchin, E., Lok, K., Porteous, L., Prince, E., Sonuga-Barke, E., Warner, J. O., & Stevenson, J. (2007). Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet, 370(9598), 1560–1567.
• Mendoza, F., & Aguilera, J. M. (2006). Application of image analysis for classification of ripening bananas. Journal of Food Science, 69(9), E471–E477.
• Mostacero León, J., López Medina, S. E., Yabar, H., & De La Cruz Castillo, J. (2017). Preserving traditional botanical knowledge: The importance of phytogeographic and ethnobotanical inventory of Peruvian dye plants. Plants, 6(4), 63.
• Naito, K., Umemura, Y., Mori, M., Sumida, T., Okada, T., Takamatsu, N., Okawa, Y., Hayashi, K., Saito, N., & Honda T. (1998). Acylated pelargonidin glycosides from a red potato. Phytochemistry, 47(1), 109–112.
• Nankar, A. N., Dungan, B., Paz, N., Sudasinghe, N., Schaub, T., Holguin, F. O., & Pratt, R. C. (2016). Quantitative and Qualitative Evaluation of Kernel Anthocyanins from Southwestern United States Blue Corn. Journal of the Science of Food and Agriculture 96(13): 4542–52.
• Náthia-Neves, G., Tarone, A.G., Tosi, M.M., Júnior, M.R., & Meireles, M.A. (2017). Extraction of bioactive compounds from genipap (Genipa americana L.) by pressurized ethanol: Iridoids, phenolic content and antioxidant activity. Food Research International, 102, 595–604.
• Neri-Numa, I.A., Angolini, C.F.F., Bicas, J.L., Ruiz, A.L.T.G., & Pastore, G.M. (2018). Iridoid blue-based pigments of Genipa americana L. (Rubiaceae) extract: Influence of pH and temperature on color stability and antioxidant capacity during in vitro simulated digestion. Food Chemistry 263, 300–306.
• Neri-Numa, I.A., Pessoa, M.G., Paulino, B.N., & Pastore, G.M. (2017). Genipin: A natural blue pigment for food and health purposes. Trends Food Science and Technology, 67, 271–279
• Ochoa, C. M. (1990). The potatoes of South America: Bolivia. Cambridge University Press.
• Pangestu, N. P., Miyagusuku-Cruzado, G., & Giusti, M. M. (2020). Copigmentation with chlorogenic and ferulic acid affected color and anthocyanin stability in model beverages colored with Sambucus peruviana, Sambucus nigra, and Daucus carota during storage. Foods, 9(10), 1476.
• Paulsmeyer, M. N., Vermillion, K. E., & Juvik, J. A. (2022). Assessing the diversity of anthocyanin composition in various tissues of purple corn (Zea mays L.). Phytochemistry, 113263. https://doi.org/10.1016/j.phytochem.2022.113263
• Pedreschi, R., & Cisneros-Zevallos, L. (2007). Phenolic profiles of Andean purple corn (Zea mays L.). Food Chemistry, 100(3), 956–963.
• Perveen A., & Qaiser, M. (2010). Pollen flora of Pakistan–LXV. Berberidaceae. Pakistani Journal of Biology, 42(1), 1–6.
• Peterson, P. D., Leonard, K. J., Miller, J. D., Laudon, R. J., & Sutton, T. B. (2005). Prevalence and distribution of common barberry, the alternate host of Puccinia graminis, in Minnesota. Plant disease, 89(2), 159–163.
• Porras-Mija, I., Chirinos, R., Garcia-Rios, D., Aguilar-Galvez, A., Huaman-Alvino, C., Pedreschi, R., & Campos, D. (2020). Physico-chemical characterization, metabolomic profile and in vitro antioxidant, antihypertensive, antiobesity and antidiabetic properties of Andean elderberry (Sambucus nigra subsp. peruviana). Journal of Berry Research, 10(2), 193–208.
• Ramos-De-La-Peña, A.M., Montañez, J.C., Reyes-Vega, M.D., Hendrickx, M.E., & Contreras-Esquivel, J.C. (2015). Recovery of genipin from genipap fruit by high pressure processing. LWT - Food Science and Technology, 63(2), 1347–1350.
• Ramos-De-La-Peña, A.M., Renard, C.M., Montañez, J., Reyes-Vega, M.D., & Contreras-Esquivel, J.C. (2014). A review through recovery, purification, and identification of genipin. Phytochemistry Reviews, 15(1), 37–49.
• Ramos-De-La-Peña, A.M., Renard, C.M., Wicker, L., Montañez, J.C., García-Cerda, L.A., & Contreras-Esquivel, J.C. (2014). Environmentally friendly cold mechanical/sonic enzymatic assisted extraction of genipin from genipap (Genipa americana). Ultrasonics Sonochemistry, 21(1), 43–49.
• Reyes, L. F., Miller, J. C. & Cisneros-Zevallos, L. (2004). Environmental conditions influence the content and yield of anthocyanins and total phenolics in purple- and red-flesh potatoes during tuber development. American Journal of Potato Research, 81(3), 187-193.
• Rodriguez-Saona, L. E., Giusti, M. M., & Wrolstad, R. E. (1998). Anthocyanin pigment composition of red-flesh potatoes. Journal of Food Science, 63(3), 458–465.
• Salaman, R. N., & Burton, W. G. (1985). The history and social influence of the potato. Cambridge University Press.
• Sigurdson, G. T., Tang, P., & Giusti, M. M. (2017). Natural colorants: Food colorants from natural sources. Annual Review of Food Science and Technology, 8(1), 261–280.
• Spence, C. (2015). On the psychological impact of food colour. Flavour, 4(1), 21.
• McCann, D., Barrett, A., Cooper, A., Crumpler, D., Dalen, L., Grimshaw, K., Kitchin, E., Lok, K., Porteous, L., Prince, E., Sonuga-Barke, E., Warner, J. O., & Stevenson, J. (2007). Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet, 370(9598), 1560–1567.
• Mendoza, F., & Aguilera, J. M. (2006). Application of image analysis for classification of ripening bananas. Journal of Food Science, 69(9), E471–E477.
• Mostacero León, J., López Medina, S. E., Yabar, H., & De La Cruz Castillo, J. (2017). Preserving traditional botanical knowledge: The importance of phytogeographic and ethnobotanical inventory of Peruvian dye plants. Plants, 6(4), 63.
• Naito, K., Umemura, Y., Mori, M., Sumida, T., Okada, T., Takamatsu, N., Okawa, Y., Hayashi, K., Saito, N., & Honda T. (1998). Acylated pelargonidin glycosides from a red potato. Phytochemistry, 47(1), 109–112.
• Nankar, A. N., Dungan, B., Paz, N., Sudasinghe, N., Schaub, T., Holguin, F. O., & Pratt, R. C.
• Ulloa Ulloa, C., Sagástegui, A., & Sánchez, I. (2006). Berberidaceae endémicas del Perú. Revista Peruana de Biología, 13(2), 171-173.
• Wallace, T. C., & Giusti, M. M. (2008). Determination of color, pigment, and phenolic stability in yogurt systems colored with nonacylated anthocyanins from Berberis boliviana L. as compared to other natural/synthetic colorants. Journal of Food Science, 73(4), C241-C248.
• Wan, A., Wang, X., Kang, Z., & Chen, X. (2017). Variability of the stripe rust pathogen. In Stripe rust (pp. 35–154). Springer, Dordrecht.
• Wang, S. Y., & Lin, H. S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry, 48(2), 140–146.
• Wrolstad, R. E., & Culver, C. A. (2012). Alternatives to those artificial FD & C food colorants. Annual Review of Food Science and Technology, 3(1), 59–77.
• Wu, S., Ford, C., & Horn, G. (2013). U.S. Patent No. US 8,557,319 B2. Washington, DC: U.S. Patent and Trademark Office.
• Wu, S., & Horn, G. (2013). U.S. Patent No. WO 2013/070682 Al. Washington, DC: U.S. Patent and Trademark Office.
• Wu, X., Beecher, G. R., Holden, J. M., Haytowitz, D. B., Gebhardt, S. E., & Prior, R. L. (2006). Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry, 54(11), 4069–4075.
• Zampini, M., Sanabria, D., Phillips, N., & Spence, C. (2007). The multisensory perception of flavor: Assessing the influence of color cues on flavor discrimination responses. Food Quality and Preference, 18(7), 975–984.
• Zellner, D. A., & Whitten, L. A. (1999). The effect of color intensity and appropriateness on color-induced odor enhancement. The American Journal of Psychology, 112(4), 585–604.
• Zhao, C. L., Chen, Z. J., Bai, X. S., Ding, C., Long, T. J., Wei, F. G., & Miao, K. R. (2014). Structure–activity relationships of anthocyanidin glycosylation. Molecular diversity, 18(3), 687–700.
• Zhao, X., Corrales, M., Zhang, C., Hu, X., Ma, Y., & Tauscher, B. (2008). Composition and thermal stability of anthocyanins from Chinese purple corn (Zea mays L.). Journal of agricultural and food chemistry, 56(22), 10761–10766.
• Zhou, Y (2021). Comparing the biochemical compositions of fruits from the Sambucus species and the color expression of their anthocyanin extracts as modulated by UV irradiation. The Ohio State University, PhD Dissertation.
• Zhou, Y., Gao, Y. G., & Giusti, M. M. (2020). Accumulation of anthocyanins and other phytochemicals in American elderberry cultivars during fruit ripening and its impact on color expression. Plants, 9(12), 1721.
• Žilić, S., Serpen, A., Akıllıoğlu, G., Gökmen, V., & Vančetović, J. (2012). Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. Journal of Agricultural and Food Chemistry, 60(5), 1224–1231.
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Gonzalo Miyagusuku-Cruzado, Danielle M. Voss, Carla Del Carpio-Jiménez, Fei Lao, Pu Jing, Kai Zhang, Yucheng Zhou, Sydney Grouge, M. Monica Giusti
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.