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Abstract

Soil water holding capacity at permanent wilting point is imperative for plant water stress in specific soil 
type. This study was undertaken to formulate a regression model or equation for predicting permanent wilting 
points (PWP) of soils on a typical Alfisol of basement complex origin at the Teaching and Research Farm 
of the University of Ilorin. A total of forty five (45) disturbed and forty five (45) undisturbed soils samples 
were collected along a toposequence (upper, middle and bottom slope) at 3 depths: 0 cm – 30 cm, 30 cm – 60 
cm, and 60 cm – 90 cm. Soil properties of the disturbed and undisturbed samples were determined using basic 
experimental methods and/ or calculated using reputable techniques. The measured soil properties include the 
proportions of soil separates, bulk density, total porosity, PWP and organic matter. Three different models were 
developed for predicting PWP of soil using regression model technique. There was no significant relationship 
between PWP and soil separates, bulk density and total porosity. However, only the silt content was positively 
correlated with PWP (r=0.22; p<0.05). Although, model three of PWP with the highest adjusted coefficient 
of determination (0.2952) emerged as the optimal choice. The model clarifies 30 % of part of variance in the 
mean square error of PWP with sand, silt and clay contributing statistically to the model. This implies that 
additional variables and techniques such as spatial and machine learning aside those used in the present study 
would provide a more reliable pedotransfer function for predicting PWP in the soil. 

Keywords: Pedotransfer function, regression models, soil moisture content, toposequence, water 
coefficient.	

Resumen

La capacidad de retención de agua del suelo en el punto de marchitamiento permanente es fundamental para 
el estrés hídrico de las plantas en un tipo de suelo específico. Este estudio se llevó a cabo para formular un 
modelo de regresión o ecuación para predecir los puntos de marchitamiento permanente (PWP) de los suelos 
en un Alfisol típico de origen complejo basal en la Granja de Enseñanza e Investigación de la Universidad de 
Ilorin. Se recogió un total de cuarenta y cinco (45) muestras de suelos alterados y cuarenta y cinco (45) no 
alterados a lo largo de una toposequencia (pendiente superior, media e inferior) a 3 profundidades: 0 cm - 30 
cm, 30 cm - 60 cm, y 60 cm - 90 cm. Las propiedades del suelo de las muestras perturbadas y no perturbadas 
se determinaron utilizando métodos experimentales básicos y/o se calcularon utilizando técnicas acreditadas. 
Las propiedades del suelo medidas incluyen las proporciones de suelo separadas, densidad aparente, porosidad 

How to cite this article:
Affinnih, K., Olaniyan, J., Ahamefule, H., & Anwanane, N. (2024). Modelling of permanent wilting point from routine soil properties on a typical 
alfisol. Peruvian Journal of  Agronomy, 8(1), 55-68. https://doi.org/10.21704/pja.v8i1.2047

mailto:affinnih.ko@unilorin.edu.ng
mailto:kehkennyy@yahoo.com


Modelling of permanent wilting point from routine soil properties on a typical alfisol

January to April 2024

56

total, PWP y materia orgánica. Se desarrollaron tres 
modelos diferentes para predecir la PWP del suelo 
utilizando la técnica del modelo de regresión. No se 
observó ninguna relación significativa entre la PWP 
y los separadores del suelo, la densidad aparente y 
la porosidad total. Sin embargo, solo el contenido 
de limo se correlacionó positivamente con PWP 
(r=0.22; p<0.05). Aunque, el modelo tres de PWP 
con el coeficiente de determinación ajustado más 
alto (0.2952) emergió como la elección óptima. El 
modelo aclara el 30 % de parte de la varianza en el 
error cuadrático medio de PWP con arena, limo y 
arcilla contribuyendo estadísticamente al modelo. 
Esto implica que variables y técnicas adicionales, 
como el aprendizaje espacial y automático, aparte de 
las utilizadas en el presente estudio, proporcionarían 
una función de pedotransferencia más fiable para 
predecir la PWP en el suelo. 

Palabras clave: Función de pedotransferencia, 
modelos de regresión, contenido de humedad del 
suelo, toposequencia, coeficiente hídrico.

Introduction
The essence of modeling lies in simplifying 
complex realities into manageable representations 
called models (Kinoshita et al., 2012). These 
models capture key elements that are essential 
for understanding or predicting a specific 
outcome (Van Looy et al., 2017). For example, 
in soil science, models can represent the 
behavior of soil systems (Obi et al., 2012). One 
key parameter in such models is the permanent 
wilting point (PWP) (Kinoshita et al., 2012). 
This represents the moisture level in soil at which 
foliage permanently shrivel due to their inability 
to conduct moisture from soil. Understanding 
soil water retention, including the PWP, is crucial 
for optimizing water management practices in 
agriculture, ultimately leading to sustainable 
and improved production. Knowledge of soil 
moisture content is vital to decide plant variety 
to be grown, available water for plant growth, 
water stress as well as solute movement, 
evapotranspiration, cropping systems, tillage 
management, infiltration, drainage and irrigation 
scheduling and other assorted hydro-physical 
processes. 

Soil water holding capacity is critical for 
simulating the hydrological behaviour of 

landscapes and assessing the suitability of soil 
for various applications (Kukal et al., 2023). This 
ability to retain water is primarily determined by 
capillarity, the physical phenomenon arising from 
the interaction between water molecules and soil 
particles. The effectiveness of capillarity, in turn, 
depends heavily on the structure of soil pores.

Several key factors collectively influence 
soil water retention, including texture (the size 
and proportion of particles greatly impact pore 
size and water holding capacity), structure (the 
organization of particle and aggregates affects 
pore connectivity and water movement), bulk 
density (the density of soil particles influences 
the volume of pores available for water 
storage), organic matter (OM) content (organic 
matter increases pore space and water holding 
capacity), etc. (Amsili et al., 2022; Vereecken et 
al., 1989). Since water retention is pretentious 
by these aforementioned physical properties, 
empirical relationships accelerated by advances 
in computer modelling (Minasny et al., 1999) 
could be developed for their prediction in soils, 
which can help in making informed decisions 
about land use and management. In line with 
this, pedotransfer function (PTF), defined as 
converting available data (those we have) into 
useful information (what we need) was devised 
by Bouma (1989). This allowed for the creation 
of functions that predict the values of specific 
soil properties based on other, more readily and 
economically measurable properties. These PTFs 
are often established from empirical observations 
whose applicability would however be restricted 
to the datasets employed in generating the model 
(Donatelli et al., 1996; Wosten et al., 1999). The 
general form of the linear regression equation is:

Y = b0+ b1x1+ b2x2 + b3x3 + b4x4 + b5x5 + b6x6    (1)

where Y denotes the dependent variable such 
as water content at selected water potential, b0 the 
intercept, b1 to b6 are the regression coefficients 
and x1 to x6 represents the independent variables 
signifying the basic soil properties. 

The diverse characteristics of soil across 
a toposequence, a sequence of soils along a 
slope, arise from a complex interplay of natural 
and human influences. Geological processes 
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establish the initial foundation, while soil 
formation further shapes these properties. Land 
use and management practices over time leave 
their mark, and natural forces like erosion and 
deposition further sculpt the landscape, leading 
to the unique mosaic of soil properties observed 
across the toposequence (Phillips, 2007).

Research has shown a strong link between 
soil particle size, its derivatives, solute transport 
properties, other characteristics (Amsili et al., 
2024; Mbagwu et al., 1983; Ogban & Ekerette, 
2001), as well as even mineralogy (Souza et al., 
2009). Understanding these relationships could 
help model soil properties related to the PWP 
(-1500 kPa), the critical soil moisture threshold 
for plant survival. This study purposes to create 
a regression model for predicting the permanent 
wilting point in Alfisols soils at the Teaching and 
Research Farm of the University of Ilorin. By 
establishing these relationships, the model could 
aid in optimizing water management and ensure 
timely irrigation in agricultural practices.

Materials and methods
Description of Study Area 

This research was carried out on a toposequence 
(upper, middle, and bottom slope positions) at the 
Teaching and Research Farm of the University of 
Ilorin, Ilorin, Nigeria. The region lies within the 
Southern Guinea Savanna zone (Lat. 9° 29’ N, 
long. 4° 35’ E, 307 m elevation) and features a 
tropical climate with bimodal rainfall (1000-1240 
mm annually) and temperatures ranging from 20 
°C - 35 °C (Kolo et al., 2012). The dominant soil 
type is gravelly Alfisols, formed over a basement 
complex (Olaniyan, 2003). Historically used for 
agriculture, the site was in a fallow state during 
the sampling period.
 
Soil Sampling and Analysis

Soil were sampled along the toposequence 
(upper, middle, and bottom slope positions) 
at three depths (0 cm -30 cm, 30 cm -60 cm, 
and 60 cm - 90 cm). Fifteen mini-pits were 
excavated, with five located at each slope 
position. Ninety samples were collected (45 
disturbed, 45 undisturbed). Undisturbed samples 

were collected using metallic cylinders (8.3 
cm height, 5.5 cm diameter). The soil within 
the cylinders was held in place with calico and 
rubber bands, then carefully labelled. A soil 
auger was used to collect disturbed samples and 
put in labelled polythene bags. These samples 
were transported to the laboratory for further 
physical and chemical properties determination 
using standard procedures.

Preparation of Soil Samples 

The disturbed soil samples were air-dried, then 
ground and sieved to pass through a 2 mm mesh 
size sieve prior to analysis.

Soil Properties Analysis

Particle Size Analysis

Particle size analysis was conducted by the 
hydrometer method reported by Gee & Or (2002) 
employing sodium hexametaphosphate (calgon) 
as dispersant.

Bulk Density

Core method was employed for the determination 
of Bulk density, following the procedure outlined 
by Blake & Hartge (1986). First, undisturbed 
soil was dried using hot air oven at 105 °C till 
constant weight was attauned. Bulk density was 
computed using the formula:	

ρb=  Ms/Vt                                                       (2)

Where, ρb= bulk density (kg/m3),

Ms = oven-dried soil mass (kg),

Vt = volume of soil (m3)

Total Porosity

Total porosity was calculated as:

Ø=[1-  ρb/ρs ]                                                    (3)

Where, Ø =Total porosity (m3/m3)

ρb,= bulk density (kg/m3 ),

ρs= particle density asummed to be 2650 kg/m3
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Soil Organic Matter

The determination of soil organic carbon (OC) 
was done using the Walkley-Black wet oxidation 
method (Nelson & Sommers, 1982). To convert 
the measured OC content into soil organic matter 
(OM), a standard conversion factor of 1.724 was 
applied.  This factor accounts for the approximate 
58 % carbon composition of SOM (Brady & 
Weil, 1999).

Permanent Wilting Point (PWP)

The determination of PWP was done using a 
procedure adapted from Odu et al. (1986). 300 
g of air-dried soil that had been made to pass 
through a 2 mm sieve from each sampling point 
was moistened in pots, and three maize seeds 
were planted in each pot. After thinning to one 
seedling per pot, an aluminum ring was placed 
around the base of each plant before the opening 
of the coleoptile and pressed slightly into the soil. 
The plants were then allowed to grow until they 
reached the four-leaf stage. Next, the soil surface 
of each pot was sealed with a ¼-inch layer of 
molten paraffin wax. Finally, cotton wool was 
used to fill any gaps between the seedling stem 
and the aluminum ring, ensuring that water loss 
could only occur through the plant. The seedlings 
were left to grow and monitored for clear signs 
of wilting. Upon initial wilting, plants were 
shaded overnight to observe if they recovered. 
If wilting persisted, PWP was confirmed.  The 
samples were then weighed prior to oven-drying 
and afterwards, with the difference in weight (as 
percentage dry soil) determining the PWP.

Statistical Tool

Correlation Analysis

When two or more quantities vary in sympathy 
such that movement in one tend to be accompanied 
by analogous movement in the others, at that 
time such quantities are ascribed to be correlated.

A multiple correlation was employed for the 
exploration of the relationship between measured 
pair of values. The statistical tool was given as: 

 r = ((Zij)(Zik))/n                                                    (4)

and Zij=Xij-X)/Sj                                                (5)

is the standardized values of the response 
variable.

Sj = √((∑(Xij - Xj))/(n-1))                                 (6)

is the sample variance of the response variable 

This correlation coefficient is generally 
called Karl Pearson’s coefficient of correlation. 
Correlation coefficient quantifies the level of 
association (linear relationship) amid two or 
more random variables. Correlation coefficient 
may be positive or negative. A significant positive 
correlation coefficient indicates that an increase 
in one variable is accompanied by a similar 
increase in the other. While significant negative 
correlation coefficient indicates an inverse 
relationship between the two random variables 
in question. On the other hand, a non-significant 
correlation coefficient implies zero relationship 
between the variables under study. 

A test statistic suggested by Morrison (1976) shall 
be used to test for significance of this correlation 
coefficient. This test is given as: 

t=r  √((n-2)/(1-r2 ))                                                                       (7)

where, r is the so called Karl Pearson’s correlation 
coefficient; n is sample size. It can be shown that 
when Ho is true, t ~ tα⁄2(n-2)                           (8)

Model Development

Permanent Wilting Point 

An underlying assumption in multiple regression 
is that the predictions (independent variables) 
are known without any uncertainty in their 
given values. Consequently, for the model to be 
applicable for both the estimation and predictions 
of the datasets, all assumptions were investigated 
and necessary violations corrected based on the 
fit of the models. Generally, the diagnostic plots 
from the regression models was used to check 
assumptions including normality of residuals and 
presence of potential outliers. This was done by 
using “Residuals versus Fitted” charts to show 
if there was a trend to the residuals and Shapiro-
Wilk’s test of residuals normality  in the R software 
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for statistical computing and graphics (R core 
team, 2022) to confirm residuals normality. To 
ensure the validity of the developed model, it’s 
crucial to assess whether the model’s residuals 
(errors) follow a normal distribution. Two 
methods were employed for this purpose. First, a 
residual plot was visually inspected. Ideally, this 
plot should exhibit a random scattering of points 
around zero, indicating no significant relationship 
between the residuals and any individual 
predictor variable used in the model (Olorede et 
al., 2013; Olorede & Mudasiru, 2013). Second, 
a quantile-quantile (Q-Q) plot was generated. 
In this plot, if the points, especially those in the 
central region, fall close to a diagonal line, it 
suggests good agreement between the observed 
data and a normal distribution. Standardized 
residual criterion was employed to check effects 
of potential outliers in the dataset on the models 
by removing observations with standardized 
residuals outside the interval  (Barnett & 
Lewis, 1994; John & Prescott, 1975; Stefansky, 
1972). Also, the residuals of the models were 
standardized, this was achieved by the division 
of each by the root mean square error of its 
respective model. The expectation was for the 
lowest standardized residual to lie within ±1, and 
the highest to be within ±2; deviations from these 
ranges indicated potential outliers. All statistical 
analyses, model fitting and diagnostics were 
done using the language R version 4.2.2 (R Core 
Team, 2022).

In multiple linear regression scenarios 
like this, it is commonly acknowledged that 
various hypothesis tests concerning the model 
parameters are valuable for assessing the 
model’s effectiveness. Therefore, the need to 
describe and test hypotheses about parameters 
of the proposed regression model collectively 
as well as individually. This would ascertain 
whether there is a notable correlation between 
the response variables (PWP) and a specific 
subset of the predictors. The built models were 
thus screened based on number of significant 
parameters, maximum amount of proportion of 
variability about the response by these parameters 
and satisfaction of model assumptions using 
diagnostic plots.

Rejection of null hypothesis about the full 
model (model with all parameters) implies that at 
least one of the predictors donates meaningfully 
to the model. Rejection of null hypothesis about 
individual regression parameter (ANOVA table) 
indicates that the variable cannot be deleted from 
the model. Coefficient of multiple determination 
(R2) measures magnitude of decrease in the 
variability of permanent wilting point gotten by 
using the 6 predictors in the model. Merely having 
a high R-squared value doesn’t automatically 
indicate the regression model’s quality (Myers & 
Montgomery, 1995). Adding an extra predictor 
continually boosts R-squared, regardless of the 
statistical significance of the added variable. 
Consequently, models with high R-squared 
values might yield inaccurate predictions for 
new observations or mean response estimates. 
Hence, certain regression model developers opt 
for adjusted R-squared (Myers & Montgomery, 
1995).

Generally,  will not constantly escalate as 
variables increase in the model. If the additional 
variables are superfluous, the will repeatedly drop. 
A marked difference between R2 and  is a worthy 
coincidental that the model includes terms that 
are not statistically significant. It is imperative to 
mention that presence of multicollinearity in the 
data set will make estimations of coefficients from 
the least squares fit imprecise and statistically 
insignificant (Martens & Naes, 1989). Hence, 
when the aim is basically to forecast Y using 
a set of X variables, multicollinearity is not a 
significant concern. The predictions are still 
precise, and the overall R2 (or ) indicates the 
accuracy of Y values prediction. However, if the 
objective is to comprehend in what ways various 
X variables affect Y, then multicollinearity is 
a big issue. The first challenge that individual 
p-values may be deceptive; a high p-value 
may suggest insignificance even if the variable 
is crucial. Second, confidence intervals on 
regression coefficients could be wide, potentially 
encompassing zero. This ambiguity makes it 
difficult to determine whether an increase in X 
corresponds to a rise or fall in Y. Furthermore, 
wide confidence intervals mean that excluding or 
adding a subject can drastically alter coefficients, 
possibly even changing their signs.
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In some instances, multiple regression results 
may appear inconsistent. Despite a low overall 
p-value, individual p-values for all X variables 
are high. This situation arises when two X 
variables are highly correlated, essentially 
conveying the same information such that one 
becomes redundant once the other is included. 
However, together, they significantly contribute 
to the model. Removing both variables would 
degrade the model fit considerably. Thus, while 
the overall model fits the data well, neither X 
variable makes a substantial contribution when 
added individually. This scenario indicates 
collinearity among the X variables and manifests 
as multicollinearity in the results.

Test of Hypothesis about Full Regression 
Model 

Hypothesis 1: [Test of significance encompassing 
all regression parameters]

Null hypothesis (H0): Model accurately 
represents data/ Model is suitable	

Alternative hypothesis (H1): Not H0

Or mathematically,

Null hypothesis (H0): β1=β2=...=β13=0 [No 
single predictor showed a statistically significant 
contribution to the model]

Alternative hypothesis (H1): βj ≠ 0 for at least 
one j [At least one predictor showed a statistically 
significant contribution to the model]

Tests statistic: Fratio= MSRegression/MSError    [Global 
F-test]

Decision rule: Reject the null hypothesis if 
and accept the alternative hypothesis at 0.05 
significance level, or else do not reject the null 
hypothesis.

Hypothesis 2: [Test of significance encompassing 
individual regression coefficient]

Null hypothesis (H0):  βj=0 [Predictor xj is not 
significant given that others are included in 
model]

Alternative hypothesis (H1): βj≠0 [Predictor  
is significant given that others are included in 
model]

Tests statistic: tvalue=βj/√(Cjjσ
2) [Individual 

t-test]

Cjj=diagonal element of the covariance matrix 
corresponding to βj

Decision rule: Reject the null hypothesis 
if p-value<0.05 and accept the alternative 
hypothesis at 0.05 significance level, or else do 
not reject the null hypothesis.

Results and discussion
Results

The results of the descriptive statistics obtained 
for soil properties is presented in Table 1. Results 
for Pair-wise correlation of variables measured 
during PWP experiment is obtainable in Table 
2. Results obtained for parameter estimates for 
the models generated for PWP is accessible 
in Table 3. Data obtained for the Analysis of 
Variance (ANOVA) for the multiple regression 
models established for permanent wilting point 
are presented in Table 4. 

Table 1: Descriptive Statistics of Soil Properties
Soil Properties Mean Min Max Std dev C.V
Sand (g.kg-1) 636.96 400 885 140.15 22.00
Silt (g.kg-1) 198.73 31 270 70.37 35.41
Clay (g.kg-1) 166.53 82 350 88.38 53.08
Bulk density (kg.m-3) 1402.36 1065 1698 140.19 10.00
Total porosity (m3.m-3) 0.471 0.359 0.598 0.053 11.25
Organic matter (g.kg-1) 13.12 1.38 27.80 7.40 56.40
Permanent wilting point (%) 15.15 10.00 33.33 6.71 43.26
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Statistical Analysis

Descriptive Statistics Analysis

The results obtained for the proportions of sand, 
silt and clay, bulk density, porosity, OM and 
permanent wilting point ranges from 400 g.kg-1 
to 885 g.kg-1, 31 g.kg-1 to 270 g.kg-1, 82 g.kg-1 
to 350 g.kg-1, 1065 kg.m-3 to 1698 kg.m-3, 0.359 
m3.m-3 to 0.598 m3.m-3, 1.38 g.kg-1 to 27.80 g.kg-1 
and 10.00 % to 33.33 %, respectively (Table 1). 
The data implied a high sand content, indicating 
a coarse-textured soil, with a loose, crumbly 
structure while silt ranged between moderate 
to high; and clay content varied between high 
and very high. Thus, the soils employed in the 
present study are characterized as having low 
water availability, moderate drainage and high 
water retention following the soil separates. Bulk 
density, an index of soil compaction was high, 
thus, the soils has low available water capacity 
and permanent wilting point since water fills 
small pores limiting plant availability, thereby 
plants struggle to extract water from the dense 
soil. Total porosity rated moderate to high while 
organic matter content varied between low to 
moderate, and PWP data classifies the soil as low 
(10 % - 20 %), moderate (20 % - 30 %), and high 
(> 30 %).

Pair-wise correlation

A negative relationship between sand and silt (r 
= -0.870*) and clay (r = -0.9098*) was obtained, 
though a positive relationship existed between 
sand and OM (r = 0.668*) (Table 2). The 
implication of this is that as sand increases, silt 
and clay will decrease and as sand increases OM 

will increase. Silt was positively correlated with 
clay (r =0.603*) and negatively correlated with 
OM (r = -0.512*). As silt increases, clay will 
increase and organic matter will decrease. Clay 
was inversely correlated with OM (r = -0.689*). 
As clay increases organic matter will decrease. 
Bulk density was negatively correlated with 
total porosity (r = -0.999*), when bulk density 
increases, total porosity decreases at the same 
rate. Permanent wilting point didn’t show any 
relation with the basic soil properties.

Permanent Wilting Point Model Development

Three models were created for permanent wilting 
point, each with p-values below 0.05, with the 
corresponding R2 adjusted values of 0.2351, 
0.2949 and 0.2952 for models 1, 2 and 3 as shown 
in Table 3. Model 3 of permanent wilting point 
was selected as the best predictive model since it 
recorded the highest R2 adjusted value (0.2952). 
This means that the model accurately represents 
the data related to the permanent wilting point 
with the three predictors included after removal 
of observations with potential outliers and 
non-significant predictors bulk density, total 
porosity and organic matter to assess the model’s 
predictive capability. The model accounts for 
30% of the variation in mean squared errors of 
the permanent wilting point with sand, silt and 
clay making statistically significant contributions 
to the model.  

Based on the individual statistical significance 
of each predictor variable, the findings shown in 
Table 4 for model 3 of permanent wilting point 
indicate that the null hypothesis for both silt and 
clay with corresponding p-values of 0.003126 

Table 2: Pair-wise correlation results of variables measured during permanent wilting point 
experiment

  Sand Silt Clay Bulk density Total porosity
Permanent 

wilting point
Organic 
matter

Sand 1
Silt -0.87029266* 1
Clay -0.908686821* 0.602503779* 1
Bulk density 0.08398562 0.01706638 -0.162240647 1
Total porosity -0.083583321 -0.017237012 0.161766436 -0.999996659* 1
Permanent wilting 
point -0.077695632 0.220709283 -0.016165673 -0.115205715 0.11555406 1
Organic matter 0.667549445* -0.512282805* -0.689291767* -0.003883358 0.003886232 -0.163623194 1

* Significant at 5% level when r ≥ 0.293955
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and 0.010521 respectively can be rejected. The 
simple interpretation of the findings is that every 
one of the attributes are statistically significant in 
the model when others are included and cannot 
be disregarded. The expression used for model 3 
as given in Table 3 is written in equation (9) as: 

Ŷ=-114.52266 + 0.12427 × Sand + 0.15744 × 
Silt + 0.10606 × Clay                                      (9) 

Table 3: Table of Parameter Estimates for Permanent Wilting Point Models
Model  

No.
P-value 

of Model
Model 

Multiple 
R-square 

value

Model Adjusted          
R-square value

Coefficients Estimates Std. Error t value P-value

1. 0.01892 0.3528 0.2351 (Intercept) -9.745e+01 4.670e+03 -0.021 0.98348
Clay 8.702e-02 4.323e-02 2.013 0.05234
Sand 1.167e-01 4.294e-02 2.718 0.01037 *
Silt 1.462e-01 4.480e-02 3.262 0.00257 *
Bulk Density -3.527e-03 1.767e+00 -0.002 0.99842
Total Porosity 1.187e+00 4.663e+03 0.000 0.99980
OM -1.704e-01 1.236e-01 -1.379 0.17717

2. 0.007154 0.4062 0.2949 (Intercept) -1.163e+03 4.461e+03 -0.261 0.79601
Clay 8.598e-02 4.104e-02 2.095 0.04417 *
Sand 1.146e-01 4.077e-02 2.810 0.00838 *
Silt 1.478e-01 4.254e-02 3.475 0.00149 *
Bulk Density 3.988e-01 1.688e+00 0.236 0.81472
Total Porosity 1.067e+03 4.454e+03 0.240 0.81214
OM -1.583e-01 1.174e-01 -1.348 0.18712

3. 0.001555 0.3509 0.2952 (Intercept) -114.52266 40.08649 -2.857 0.007153 *
Sand 0.12427 0.04020 3.091 0.003901*
Silt 0.15744 0.04185 3.762 0.000618*
Clay 0.10606 0.03923 2.703 0.010521 *

*implies significant at 1 or 5% level of probability

Table 4: ANOVA Table for Models developed for Permanent Wilting Point

Model No. Source of  Variation Degree of 
Freedom

Sum of 
Squares

Mean 
Squares F-values P-values

1.

Clay 1 0.07 0.068 0.0041 0.949126
Sand 1 54.39 54.393 3.3130 0.077813
Silt 1 203.66 203.665 12.4051 0.001276 *
Bulk Density 1 5.20 5.199 0.3167 0.577419
Total Porosity 1 0.74 0.735 0.0448 0.833730
OM 1 31.22 31.221 1.9016 0.177171
Residuals 33 541.79 16.418

2.

Clay 1 1.53 1.525 0.1031 0.7502629
Sand 1 68.93 68.930 4.6587 0.0385039 *
Silt 1 209.31 209.309 14.1464 0.0006817 *
Bulk Density 1 14.17 14.167 0.9575 0.3351522
Total Porosity 1 3.06 3.064 0.2071 0.6521263
OM 1 26.89 26.886 1.8171 0.1871241
Residuals 33 473.47 14.796

3.

Sand 1 22.68 22.682 1.5338 0.223791
Silt 1 149.01 149.008 10.0761 0.003126 *
Clay 1 108.08 108.075 7.3082 0.010521 *
Residuals 35 517.59 14.788

*implies significant at 1 or 5% level of probability

For model 3 of permanent wilting point, 
the residuals are now normal and there are no 
potential outliers as shown in Figure 1. In fact, the 
Cook’s distance plot now confirms this by having 
all the Cook’s distances for all the predictors less 
than 1 as shown in Figure 1. The residuals plot 
and normal quantile-quantile plots presented 
in Figure 1 also support this. Normality of the 
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residuals is further confirmed by the histogram 
presented in Figure 2.

The regression equation created for model 3 
of permanent wilting point was used in predicting 
the permanent wilting point values: observed, 
predicted and residuals of the prediction as 
revealed in Table 5. Data obtained for observed 
and predicted field capacity as presented in Table 
5 were analysed for extent of relationship and 
presented a correlation coefficient of 0.5727. 
Based on the guideline outlined at http://www.
westgard.com/lesson42.htm for assessing 
correlation coefficients, it is observed that when 
r falls within the range of 0.90 to 1.00, 0.70 and 
0.89, 0.50 and 0.69, 0.30 to 0.49, and 0.00 to 0.29, 
they are said to show very high, high, moderate, 
low, and little if any correlation, respectively. It 
indicate that permanent wilting point predictions 
of model 3 of permanent wilting point have 

Figure 1: Diagnostic Plots for Model 3 of Permanent Wilting Point

Figure 2: Histogram of Model 3 Normal 
Residuals

http://www.westgard.com/lesson42.htm
http://www.westgard.com/lesson42.htm
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Table 5: Summary of Model 3 Prediction of 
Permanent Wilting Point

Observations Observed Y 
(%)

Predicted Y 
(%)

Residuals 
(Y- Ŷ) 

1. 20 14.85562 5.14438
2. 20 11.90282 8.09718
3 11.11 10.67099 0.43901
4 11.11 14.91809 -3.80809
5 20 14.78278 5.21722
6 11.11 12.90462 -1.79462
7 11.11 11.66634 -0.55634
9 11.11 13.24024 -2.13024
10 11.11 12.90462 -1.79462
11 22.22 14.29642 7.92358
12 11.11 11.66634 -0.55634
14 11.11 13.24024 -2.13024
15 12.5 14.29642 -1.79642
17 11.11 11.24334 -0.13334
18 10 11.56787 -1.56787
19 10 10.24107 -0.24107
20 11.11 9.24597 1.86403
21 11.11 12.56622 -1.45622
22 11.11 11.24334 -0.13334
23 11.11 12.84329 -1.73329
24 11.11 11.81569 -0.70569
25 10 8.49869 1.50131
26 11.11 11.24612 -0.13612
27 12.5 11.61424 0.88576
28 20 12.96962 7.03038
29 11.11 12.82394 -1.71394
30 25 25.00384 -0.00384
31 10 14.12722 -4.12722
33 20 15.30834 4.69166
34 10 15.88322 -5.88322
35 10 14.85562 -4.85562
36 20 15.45402 4.54598
37 10 15.30834 -5.30834
38 20 15.55544 4.44456
40 10 15.30834 -5.30834
42 10 14.85562 -4.85562
43 20 15.45402 4.54598
44 20 15.55544 4.44456
45 20 15.46439 4.53561

Note: The exclusion of observations 8, 13, 16, 32, 39 and 41 was due to 
the presence of potential 

moderate correlation relationship with the 
observed permanent wilting point values. The 
graph of observed and predicted permanent 
wilting point values is presented in Figure 3. This 
shows the trend of observed and predicted values 
of PWP. 

Variable importance based on the parameter 
estimates for PWP (Table 3) model showed that 
sand and silt were the most influential predictor 

variable for model 1. While, clay was the most 
influential predictor for model 2, followed by 
sand, and then clay. Although, model 3 also had 
the three soil separates as it influential predictor, 
silt ranked first, followed by sand and then 
clay. Sand content is the principal determinant 
of total porosity, hence, there was a negative 
relationship between sand and PWP. Although, 
both silt and SOM were of secondary importance 
as predictor variables of PWP. Silt was relatively 
more important than SOM for enhancing the 
prediction of PWP as indicated by a larger 
standard error (SE) and negative t-value (Table 
3). This corroborates with the submission of 
Amsili et al. (2024) who opined that PWP were 
mostly defined by texture and SOM.  

Silt was the most important variable for the 
prediction of ƟPWP, followed by sand, and then 
clay (Model 3: , Table 3). Silt content importance 
in predicting PWP is logical because is the 
primary determinant of the proportion of total 
porosity with a pore diameter equal to less than 
0.02 µm, which is the theoretical pore size that 
can hold water at -1500 kPa in the coarse textured 
soil studied with relatively low mean clay 
(166.53 g.kg-1) content (Table 1). This finding 
was further ascertained by the weak positive 
(0.22) relationship between silt content and ƟPWP 
(Table 2). SOM also had a positive influence on 
ƟPWP, attributable to increase total porosity with 
a diameter less than 0.20 µm (Libohora et al., 
2018) while sand had a negative effect on ƟPWP, 
because increases result in a smaller proportion 
of total porosity with a diameter less than 0.20 
µm. There was a strong negative relationship 
between clay and SOM (r=0.69*, p<0.05), which 
implied that clay content of the soil decreased 
with SOM and vice-versa. This findings is in 
agreement with previous research that found 
that SOM had a small impact on ƟPWP in soil but 
counter to this submission as the soil in the present 
study had relatively low clay content (Minasny 
& Mcbratney, 2018; Saxton & Rawls, 2006). 
Hence, the statement that texture components- 
sand, silt and clay were sufficient for predicting 
PWP is not countenance in the present study 
evident from the relatively low coefficient of 
determination of 29.54 %. The low predictive 
power of this model could therefore be attributed 
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to the heterogeneity of soil and complexity of its 
properties such as soil texture, structure, organic 
matter and mineral composition coupled with the 
limited sample size along varying topographic 
positions which was probably not representative 
of the entire population, thus, leading to reduced 
model performance. Also, the relatively high 
correlation between predictor variable – silt - 
accounted for a reduced model’s explanatory 
power. 

However, the model multiple linear regression 
(MLR) R2 value had 5.57 % higher than model 
adjusted R2, which indicates inclusion of 
additional variables beyond sand, silt and clay 
would not provide meaningful improvements 
to ƟPWP. Also, diagnostic plots for residuals, 
standardized residuals and ƟPWP, gave the same 
adjusted R2 value (0.30); indicating simple 
model approach, MLR, employed in the present 
study for estimating ƟPWP was appropriate. 
Consequently, MLR would be adequate when 3 
to 4 predictor variables are being used. This is in 
tandem with earlier submission by Amsili et al. 

(2024) who also observed that the silt fraction 
was the most important variable for predicting 
ƟPWP, owing to its particle size diameter range 2 
µm -53 µm, corresponding most closely to the 
theoretical pore size range that prevent permanent 
wilting in plant.

Conclusion
The research conducted at the Teaching and 
Research Farm of the University of Ilorin for 
developing a model for predicting permanent 
wilting point (PWP) of the soil formulated three 
different models for estimating PWP of the soil. 
Model three () was selected as the optimal choice 
with the highest R2 adjusted value of 0.2952. 
Prediction of permanent wilting point of soil of 
a representative Alfisol developed on basement 
complex at the Teaching and Research Farm of 
the University of Ilorin, Ilorin Kwara State will 
commendably be contingent on dependability of 
determination of the proportion of particle sizes 

Figure 3: Graph of Observed versus Predicted Permanent Wilting Point
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of the soil. Consequently, lacking the availability 
of soil moisture measuring instrument such as 
Richard’s pressure chamber, the point assessment 
of soil moisture could be produced from easily 
quantifiable soil properties through employing 
generated PTFs. 

The present study was carried out across 
three topographic positions whose changes 
along the sequence would inform variability in 
soil properties and characteristics. Thus, this 
variability resulted in systematic underestimation 
of the soil available water capacity which 
accounted for the relatively low coefficient of 
determination that explains just 29.52 % of the soil 
variance for PWP. Hence, the model is not viable, 
efficient or effective and should be re-evaluated 
with the present model serving as an insight for 
future studies in its current form. Accordingly, 
it is however advocated that further research 
be conducted to identify additional predictors, 
thereby improve the model explanatory power 
through use of more robust and representative 
data, consideration of multiple soil properties and 
characteristics across toposequence, explore non-
linear relationships of predictor variables, check 
for measurement errors to improve measurement 
accuracy while also using techniques such as 
spatial and machine learning to enhance model 
accuracy and generalizability across different 
soil types and topographic positions, as well 
as undertake the comparison of the derived 
model with actual field permanent wilting point 
experiment to ascertain authentication of the 
predicted values with actual field values/data. 
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