Allometric models for non-destructive leaf area estimation in Eugenia uniflora (L.)
DOI:
https://doi.org/10.21704/pja.v2i2.1133Keywords:
Surinam cherry, estimate model, leaf length, leaf width.Abstract
We aimed to propose a reliable and accurate model using non-destructive measurements of leaf length (L) and/or width (W) for estimating leaf area (LA) of Surinam cherry (Eugenia uniflora L.). For model construction, 560 leaves were randomly sampled from different levels of the tree canopies and encompassed the full spectrum of measurable leaf sizes. Power models better fit E. uniflora leaf area than linear models; but, among of then, the best fit were made when product of the L and W (LW) were used. To validate these models, independent data set of 156 leaves were used. Thus, we developed a single power model (Yi = β0 xβ1) [LA = 0.685 (LW)0.989; standard errors: β0 = 0.014, β1 = 0.005; R2 a = 0.997] with high precision and accuracy, random dispersal pattern of residuals and unbiased. A simpler linear model [LA = 0.094 + (LW * 0.655); standard errors: β0 = 0.025, β 1 = 0.001; R2 a = 0.998] also described here to estimate leaf area of E. uniflora, which are as good as the first. The simplicity of the latter model may be relevant in field studies, as it does not demand high precision or expensive instruments.Downloads
References
Antunes, W.C., Pompelli, M.F., Carretero, D.M. and DaMatta, F.M. (2008). Allometric models for nondestructive leaf area estimation in coffee (Coffea arabica and Coffea canephora). Annals of Applied Biology, 153(1), 33-40. https://doi.org/10.1111/j.1744-7348.2008.00235.x
Blanco, F.F. and Folegatti, M.V. (2005). Estimation of leaf area for greenhouse cucumber by linear measurements under salinity and grafting. Scientia Agricola, 62(4), 305-309. http://dx.doi.org/10.1590/S0103-90162005000400001
Cristofori, V., Rouphael, Y., Mendoza-de Gyves, E. and Bignami, C. (2007). A simple model for estimating leaf area of hazelnut from linear measurements. Scientia Horticulturae, 113(2), 221-225. https://doi.org/10.1016/j.scienta.2007.02.006
Cumming, G., Fidler, F. and Vaux, D.L. (2007). Error bars in experimental biology. Journal of Cell Biology 177(1), 7-11. DOI: 10.1083/jcb.200611141
DataFit version 8.032. (2002). Oakdale Enginering, Oakdale, CA, USA
Demirsoy, H. (2009). Leaf area estimation in some species of fruit tree by using models as a non-destructive method. Fruits, 64(1), 45-51. https://doi.org/10.1051/fruits/2008049
Díaz, S., Kattge, J., Cornelissen, J.H.C., Wright, I.J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P.B., Moles, A.T., Dickie, J., Gillison, A.N., Zanne, A.E., Chave, J., Joseph Wright, S., Sheremet’ev, S.N., Jactel, H., Baraloto, C., Cerabolini, B., Pierce, S., Shipley, B., Kirkup, D., Casanoves, F., Joswig, J.S., Günther, A., Falczuk, V., Rüger, N., Mahecha, M.D. and Gorné, L.D. (2016). The global spectrum of plant form and function. Nature, 529, 167-171. https://doi.org/10.1038/nature16489
Image Pro Plus version 4.5.029. (2001). Media Cybernetics Inc. Rockville, MD, USA
Keramatlou, I., Sharifani, M., Sabouri, H., Alizadeh, M. and Kamkar, B. (2015). A simple linear model for leaf area estimation in Persian walnut (Juglans regia L.). Scientia Horticulturae, 184, 36-39. https://doi. org/10.1016/j.scienta.2014.12.017
Kumar, R. (2009). Calibration and validation of regression model for non-destructive leaf area estimation of saffron (Crocus sativus L.). Scientia HorticulturaeAmsterdam 122(1), 142-145. https://doi.org/10.1016/j.scienta.2009.03.019
Liu, Z., Zhu, Y., Li, F. and Jin, G. (2017). Non-destructively predicting leaf area, leaf mass and specific leaf area based on a linear mixed-effect model for broadleaf species. Ecological Indicators, 78, 340-350.https://doi.org/10.1016/j.ecolind.2017.03.025
Peksen, E. (2007). Non-destructive leaf area estimation model for faba bean (Vicia faba L.). Scientia Horticulturae-Amsterdam 113(4), 322-328. https://doi.org/10.1016/j.scienta.2007.04.003
Pompelli, M.F., Antunes, W.C., Ferreira, D.T.R.G., Cavalcante, P.P.G.S., Wanderley-Filho, H.C.L. and Endres, L. (2012). Allometric models for nondestructive leaf area estimation of the Jatropha curcas. Biomass and Bioenergy, 36, 77-85. https://doi.
org/10.1016/j.biombioe.2011.10.010
Schmildt, E.R., Amaral, J.T., Santos, J.S. and Schmildt, O. (2015). Allometric model for estimating leaf area in clonal varieties of coffee (Coffea canephora). Revista Ciência Agronômica, 46(4), 740-748. http://dx.doi. org/10.5935/1806-6690.20150061
Shabani, A. and Sepaskhah, A.R. (2017). Leaf area estimation by a simple and non-destructive method. Iran Agricultural Research, 36(2), 101-104. DOI: 10.22099/IAR.2017.4157
Souza, M.C. and Amaral, C.L. (2015). Non-destructive linear model for leaf area estimation in Vernonia ferruginea Less. Brazilian Journal of Biology, 75(1), 152-156. http://dx.doi.org/10.1590/1519-6984.09813
Steel, M. and Penny, D. (2000). Parsimony, likelihood, and the role of models in molecular phylogenetics. Molecular Biology and Evolution, 17(6), 839-850. DOI: 10.1093/oxfordjournals.molbev.a026364
Walther, B.A. and Moore, J.L. (2005). The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography, 28(6), 815-829. https://doi.org/10.1111/j.2005.0906-
04112.x
Yadav, S.K., Mishra, Y.D. and Singh, R.K. (2007). Total leaf area estimation of Flemingia semialata Roxb. by linear regression. Agricultural Science Digest 27(1), 44-46.
Zuur, A.F., Ieno, E.N. and Elphick, C.S. (2010). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1(1), 3-14. https://doi.org/10.1111/j.2041-210X.2009.00001.x