Genetic variation of maiden lily (Lilium rubellum Baker) within and among three natural populations in Fukushima Prefecture in Japan

Authors

  • M. Castro Universidad Nacional Agraria La Molina (UNALM). Jardín Botánico “Octavio Velarde Núñez”. Departamento Académico de Biología. Av. La Molina s/n, Lima 12, Perú. Apartado postal: 12-056, Perú.
  • T. Nishikawa Genebank National Institute of Agrobiological Sciences 2-1-2 Kannondai, Ibaraki, 305-8602, Japan.

DOI:

https://doi.org/10.21704/pja.v3i3.1251

Keywords:

genetic diversity, RAPD marker, Lilium rubellum

Abstract

Lily (genus Lilium) is one of the most important flowers for bulb and cut flower production in the world. Lilium rubellum Baker is a native species of Japan that exhibits early flowering, is pink coloured, and possesses a pleasant fragrance, which makes it an important genetic resource for breeding lilies. In this work, the genetic diversity of L. rubellum was studied among three natural populations located in Fukushima Prefecture, Japan, which have been designated as the Mt. Azuma, Nango and Atsushio-kano populations. A total of 31 accessions collected in 1997 were analysed using Random Amplified Polymorphic DNA (RAPD) markers. Eighteen decamer primers produced 98% polymorphic RAPD bands; furthermore, 11 of the 18 primers produced 10 or more polymorphic bands with a mean per primer Polymorphic Information Content of 0.382. Among the three populations, the mean Shannon index, Nei´s gene diversity and percentage of polymorphic loci were 0.2749, 0.4099 and 76.7%, respectively. These data revealed that there is a high genetic diversity within all the populations. Analysis of the three genetic diversity indices within populations showed that the Nango population had the highest genetic diversity, whereas the Atsushio-kano population had the lowest. An unweighted pair group method with arithmetic mean dendrogram based on Jaccard´s similarity coefficient was constructed, and the three populations of L. rubellum collected in the Fukushima prefecture were clearly differentiated at 0.61 similarity index. The Nango and Mt. Azuma populations were genetically closer than the Atsushio-kano population. The analysis of molecular variance showed a 29.53% variance among the populations. This study revealed that there is high genetic diversity within populations and moderate genetic diversity among the three natural populations of L. rubellum Baker in the Fukushima Prefecture of Japan.

Downloads

Download data is not yet available.

References

Arzate-Fernández, A. M., Miwa, M., Shimada, T., Yonekura, T., & Ogawa, K. (2005). Genetic diversity of Miyamasukashi-yuri (Lilium maculatum Thunb. var. bukosanense), an endemic and endangered species at Mount Buko, Saitama, Japan. Plant Species Biology, 20(1), 57–65. https://doi.org/10.1111/j.1442-1984.2005.00124.x

De Jong, P. C. (1974). Some notes of Lilium Evolution. Some Notes of Lilium Evolution., pp. 23–28. The Lily Yearbook of the North American Lily Society Evolution.

Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

Guo, W., Jeong, J., Kim, Z., Wang, R., Kim, E., & Kim, S. (2011). Genetic diversity of Lilium tsingtauense in China and Korea revealed by ISSR markers and morphological characters. Biochemical Systematics and Ecology, 39(4–6), 352–360. https://doi.org/10.1016/j.bse.2011.05.002

Halward, T., Stalker, T., LaRue, E., & Kochert, G. (1992). Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Molecular Biology, 18, 315–325

Hamrick, J. L., & Godt, M. J. W. (1996). Conservation Genetics of Endemic Plant Species. In C. Avise & J. L. Hamrick (Eds.), Conservation Genetics, Case Histories from Nature (pp. 281–304). London: Chapman & Hall.

Huang, Y. F., Yang, M. X., Zhang, H., Zhuang, X. Y., Wu, X. H., & Xie, W. (2009). Genetic Diversity and Genetic Structure Analysis of the Natural Populations of Lilium brownii from Guangdong, China. Biochemical Genetics, 47(7–8), 503–510. https://doi.org/10.1007/s10528-009-9258-y

Idrees, M., & Irshad, M. (2015). Molecular Markers in Plants for Analysis of Genetic Diversity: A Review. European Academic Research, 2(1), 1513–1540.

Ikinci, N., & Oberprieler, C. (2010). Genetic relationships among NE Turkish Lilium L. (Liliaceae) species based on a random amplified polymorphic DNA analysis. Plant Systematics and Evolution, 284(1), 41–48. https://doi.org/10.1007/s00606-009-0239-8

Kaufman, A. J., & Lohr, V. I. (2008). Does it Matter What Color Tree You Plant? Acta Horticulturae, 790, 179–184. https://doi.org/10.17660/actahortic.2008.790.25

Lim, K., & Van Tuyl, J. M. (2007). Lily. In N. O. Anderson (Ed.), Flower Breeding and Genetics (pp. 517–537). Dordrecht: Springer

Mammadov, T., Deniz, N., Rakhimzhanova, A., Kılınçarslan, Ö., & Mammadov, R. (2017). Studies on lilium species. International Journal of Secondary Metabolite, 4(1), 47–60. https://doi.org/10.21448/ijsm.282978

Matsuo, E., Takaesu, Y., & Asano, F. (2008). History, development and legacy of the 8th International People-Plant Symposium (IPPS 2004 in Awaji). Acta Horticulturae, 790, 21–25. https://doi.org/10.17660/ActaHortic.2008.790.1

McRae, E. A. (1998). Lilies: A Guide for Growers and Collectors. Oregon: Timber Press.

Mendonca de Carvalho, L. M. (2011). The symbolic uses of plants. In N. Anderson, E.N.; Pearsall, D.M.; Hunn, Eugene S.; Turner (Ed.), Ethnobiology (pp. 351–369). New Jersey: Wiley-Blackwell. A John Wiley & Sons, Inc.

Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321–4326.

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70(12), 3321–3323. https://doi.org/10.1073/pnas.70.12.3321

Ohsawa, T., & Ide, Y. (2011). Phylogeographic patterns of highland and lowland plant species in Japan. Alpine Botany, 121(1), 49–61. https://doi.org/10.1007/s00035-010-0083-z

Okasaki, K., Asano, Y., & Oosawa, K. (1994). Interspecific hybrids between Lilium Oriental hybrid and L. Asiatic hybrid produced by embryo culture with revised media. Breeding Science, (44), 59–64. https://doi.org/10.1270/jsbbs1951.44.59

Peakall, R., & Smouse, P. (2012). GENALEX 6.5: genetic analysis in Excel. Population genetic software for teaching and research- an update. Bioinformatics, 28(19), 2537–2539. https://doi.org/10.1093/bioinformatics/bts460

Persson, H. A., Lundquist, K., & Nybom, H. (1998). RAPD analysis of genetic variation within and among populations of Turk’s-cap lily (Lilium martagon L.). Hereditas, 128(3), 213–220. https://doi.org/10.1111/j.1601-5223.1998.00213.x

Rohlf, F. J. (1992). NTSYS-pc: numerical taxonomy and multivariate analysis system. Applied Biostatistics.

Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (No. Ed. 2). (2nd ed.). Cold spring harbor laboratory press.

Sharma, S. K., Dawson, I. K., & Waugh, R. (1995). Relationships among cultivated and wild lentils revealed by RAPD analysis. Theoretical and Applied Genetics, 91(4), 647–654. https://doi.org/10.1007/BF00223292

Shimizu, M. (1971). Lilies in Japan (In Japanese) Seibundo Shinko-Sha. In Lilies of Japan (In Japanese). Tokyo: Seibundo-Shinkosha Co. Ltd.

Van Tuyl, J. M., & Arens, P. (2011). Lilium: Breeding history of the modern cultivar assortment. Acta Horticulturae, 900, 223–230. https://doi.org/10.17660/ActaHortic.2011.900.27

Van Tuyl, J. M., Arens, P., Ramanna, M. S., Shahin, A., Khan, N., Xie, S., Barba-Gonzalez, R. (2011). Lilium. In C. Kole (Ed.), Wild Crop Relatives: Genomic and Breeding Resources. Plantation and Ornamental Crops (pp. 161–183). Springer-Verlag Berlin Heidelberg.

Velasco-Ramírez, A. P., Torres-Morán, M. I., Molina-Moret, S., De Jesús Sánchez-González, J., & Santacruz-Ruvalcaba, F. (2014). Efficiency of RAPD, ISSR, AFLP and ISTR markers for the detection of polymorphisms and genetic relationships in camote de cerro (Dioscorea spp.). Electronic Journal of Biotechnology, 17(2), 65–71. https://doi.org/10.1016/j.ejbt.2014.01.002

Wang, W., Chen, L., Yang, P., Hou, L., He, C., Gu, Z., & Liu, Z. (2007). Assessing genetic diversity of populations of topmouth culter (Culter alburnus) in China using AFLP markers. Biochemical Systematics and Ecology, 35(10), 662–669. https://doi.org/10.1016/j.bse.2007.04.008

Wen, C. S., & Hsiao, J. Y. (2001). Altitudinal Genetic Differentiation and Diversity of Taiwan Lily (Lilium longiflorum var. formosanum; Liliaceae) Using RAPD Markers and Morphological Characters Author (s): C. S. Wen and J. Y. Hsiao Published by: The University of Chicago Press. International Journal of Plant Science, 162(2), 287–295.

Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18(22), 6531–6535. https://doi.org/10.1093/nar/18.22.6531

Wu, Z. H., Shi, J., Xi, M. L., Jiang, F. X., Deng, M. W., & Dayanandan, S. (2015). Inter-simple sequence repeat data reveals high genetic diversity in wild populations of the narrowly distributed endemic lilium regale in the Minjiang River valley of China. PLoS ONE, 10(3), 1–17. https://doi.org/10.1371/journal.pone.0118831

Yamagishi, M. (1995). Detection of section-specific random amplified polymorphic DNA (RAPD) markers in Lilium. Theoretical and Applied Genetics, 91(6–7), 830–835. https://doi.org/10.1007/BF00223888

Yi, J. Y., Lee, G. A., Chung, J. W., Lee, S. Y., & Lim, K. B. (2013). Efficient cryopreservation of Lilium spp. shoot tips using droplet-vitrification. y, 1(2), Plant Breeding and Biotechnology, 131–136.

Downloads

Published

2019-12-30

How to Cite

Castro, M., & Nishikawa, T. (2019). Genetic variation of maiden lily (Lilium rubellum Baker) within and among three natural populations in Fukushima Prefecture in Japan. Peruvian Journal of Agronomy, 3(3), 112-119. https://doi.org/10.21704/pja.v3i3.1251