Effect of light type and mechanical scarification on the germination of passion fruit seeds (Passiflora edulis var. flavicarpa)

Authors

DOI:

https://doi.org/10.21704/pja.v9i1.2014

Keywords:

Germination percentage, mechanical scarification, LED light, normal seedlings, seeds viability

Abstract

The physiological quality of seeds is essential for ensuring efficient agricultural production. This study evaluated the interaction between light type (LED, fluorescent, darkness) and mechanical scarification on seed germination and viability. A completely randomized design (CRD) with a 3 × 2 factorial arrangement assessed six treatments involving scarified and non-scarified seeds. Seeds collected from three locations were dried, pretreated with tap water to overcome dormancy, and evaluated using the Between-Paper Method (BP) in light chambers with 100 seeds per replication. A 1 % tetrazolium viability test was conducted on scarified seeds, incubated at 30 °C for 18 hours to confirm embryo viability. Germination percentages were calculated based on the number of normal seedlings per treatment. Statistical analysis revealed a significant interaction between light type and micropyle scarification (p < 0.05), demonstrating that the effect of scarification depends on the light conditions. Scarified seeds exposed to LED light achieved the highest germination percentage (93.5 %), while non-scarified seeds subjected to fluorescent light or darkness showed the lowest rates. Micropyle scarification significantly improved germination (66.5 % versus 44.08 % for non-scarified seeds). No direct correlation was found between germination and viability (r = -0.88), highlighting the influence of additional factors. Furthermore, seeds from the Zapallal bio-garden showed superior germination, likely due to favorable local conditions. These results confirm that Passiflora edulis var. flavicarpa seeds are positively photoblastic, 

Downloads

Download data is not yet available.

References

Amaya-Robles, J. E. (2009-2010). Cultivo de maracuyá (Passiflora edulis Sims f. flavicarpa Deg.). Trujillo, Perú: Gerencia Regional Agraria La Libertad. https://cdn.www.gob.pe/uploads/document/file/1908159/MANUAL%20DEL%20CULTIVO%20DE%20MARACUYA.pdf.pdf

Akbarian, B., Matloobi, M., & Mahna, N. (2016). Effects of LED Light on Seed Emergence and Seedling Quality of Four Bedding Flowers. Journal of Ornamental Plants, 6(2), 115 – 123.

Angelini, L. G., Clemente, C., & Tavarini, S. (2021). Pre-Germination Treatments, Temperature, and Light Conditions Improved Seed Germination of Passiflora incarnata L. Agricultura, 11(10), 937. https://doi.org/10.3390/agriculture11100937

Baskin, C. C., & Baskin, J. M. (2014). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press.

Betancur, E., García, E. L., Giraldo, M., Quejada, O., Rodríguez, H. D., & Arroyave, I. C. (2014). Manual del cultivo de Maracuyá bajo buenas prácticas agrícolas. Colombia. https://www.academia.edu/33659336/Maracuya_BPA

Carvalho, N. M., & Nakagawa, J. (2012). Sementes: Ciência, Tecnologia e Produção. FUNEP, Jaboticabal (p. 590)

Costa, P. R., de Oliveira, J. P. B., Araújo, A. G. A., Lopes, J. C., Schmildt, E. R., Otoni, W. C., & Alexandre, R. S. (2016). Morphometry ‘in vitro-ex vitro’ germination and tetrazolium testing of stinking passionflower [Passiflora foetida ‘var.’ glaziovii’ Killip] (Passifloraceae) seeds. Australian Journal of Crop Science, 10(8), 1075–1082. https://doi.org/10.21475/ajcs.2016.10.08

Dempsey, W. H., & Boynton, J. E. (1965). Effect of seed number on fruit size and maturity in tomatoes [Resumen]. Proceedings of the American Society for Horticultural Science, 86, 575–581. https://eurekamag.com/research/014/444/014444319.php?form=MG0AV3

Diario Gestión (2022, May 17). La exportación de maracuyá peruana creció en 10.1% en primer bimestre. Diario Gestión. https://gestion.pe/economia/empresas/exportacion-de-maracuya-peruana-crecio-101-en-el-primer-bimestre-de-2022-estados-unidos-paises-bajos-rmmn-noticia/

Finch-Savage, W. E., & Leubner-Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501–523. https://doi.org/10.1111/j.1469-8137.2006.01787.x

Flores, M. A., Ortega, W., & Ortega, A. (2020). Evaluación de tratamientos pregerminativos en semillas de Euterpe precatoria Mart. (Huasaí) en la ciudad de Pucallpa-Perú. Revista Cubana de Ciencias Forestales, 8(1), 88–103. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2310-34692020000100088

Gutiérrez, M., Miranda, D., & Cárdenas-Hernández, J. (2011). Efecto de tratamientos pregerminativos sobre la germinación de semillas de gulupa (Passiflora edulis Sims.), granadilla (Passiflora ligularis Juss.) y cholupa (Passiflora maliformis L.). Revista Colombiana de Ciencias Hortícolas, 5(2), 209–219.

Hiega, K. M. R., Braga, L. N., Dardengo, J. F. E., Silveira, G. F. da, Arenas, M. D. de S., da Silva, J., & Rossi, A. A. B. (2021). Caracterização morfologica de frutos, sementes e germinação de Passiflora cristalina Vanderpl. & Zappi. Revisión de la Facultad de Agronomía, Universidad Nacional de La Plata, Argentina, 120(2). https://doi.org/10.24215/16699513e081

Hosseini, M. K., Powell, A. A., & Bingham, I. J. (2002). Comparison of seed germination and early seedling growth of soybean under saline conditions. Seed Science Research, 12(3), 165–172. https://doi.org/10.1079/SSR2002108

Instituto Nacional de Investigación Agraria [INIA] (2019, November 21). INIA trabaja en identificar semillas de maracuyá de alta calidad genética para exportación. INIA https://www.inia.gob.pe/2019-nota-144/

International Seed Testing Association [ISTA] (2003). Working Sheets on Tetrazolium Testing, Volume I. 1st Edition. Bassersdorf: ISTA.

International Seed Testing Association [ISTA] (2016). Reglas internacionales para el análisis de las semillas. Montevideo, Uruguay. https://vri.umayor.cl/images/ISTA_Rules_2016_Spanish.pdf

International Seed Testing Association [ISTA] (2018). The Handbook on Seedling Evaluation. 4ª Edición.

Junghans, T. G., & De Jesus, O. N. (2017). Maracujá do cultivo à comercialização. Brasília, DF: Embrapa. https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1081724

Liang, D., Yousef, A. F., Wei, X., Ali, M. M., Yu, W., Yang, L., Oelmüller, R., & Chen, F. (2021). Increasing the performance of Passion fruit (Passiflora edulis) seedlings by LED light regimes. Sci Rep 11, 20967. https://doi.org/10.1038/s41598-021- 00103-1

Mabundza, R., Wahome, P. K., & Masarirambi, M. T. (2010). Effects of different pregermination treatment methods on the germination of passion (Passiflora edulis) seeds. J. Agric. Soc. Sci., 6(3), 57–60 http://www.fspublishers.org/jass/past-issues/JASSVOL_6_NO_3/4.pdf

Ministério da Agricultura, Pecuária e Abastecimento [MAPA] (2009). Regras para Análise de Sementes (RAS). Brasilia. https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf

Meletti, L. M. M., Soares-Scott, M. D., & Bernacci, L. C. (2005). Melhoramento genético do maracujazeiro: Passado e futuro. Revista Brasileira de Fruticultura, 27(1), 44–52.

Passos, I. R. D. S., Matos, G. V. D. C., Meletti, L. M. M., Scott, M. D. S., Vernaci, L. C., & Vieira, M. A. R. (2004). Utilização do ácido giberélico para a quebra de dormência de semente de Passiflora nitida Kunth germinadas in vitro. Revista Brasileira de Fruticultura, 26 (2), 380–381. https://doi.org/10.1590/S0100-29452004000200051

Porras, Y. C., Pedreros, M. C., Reyes, W. L., & Balaguera-López, H. E. (2020). Efecto de la luz sobre la germinación de semillas de champa (Campomanesia lineatifolia R. & P.). Ciencia y Agricultura, 17(2), 23–31.

Posada, P., Ocampo, J., & Santos, L. G. (2014). Estudio del comportamiento fisiológico de la semilla de tres especies cultivadas de Passiflora L. (Passifloraceae) una contribución para la conservación ex situ. Revista Colombiana de Ciencias Hortícolas, 8(1), 9–19.

Rodriguez, N., Melgarejo, L. M., & Blair, M. W. (2020). Seed Structural Variability and Germination Capacity in Passiflora edulis Sims f. edulis. Frontiers in Plant Science, 11, 498. https://doi.org/10.3389/fpls.2020.00498

Rosabal Ayan, L., Martínez González, L., Reyes Guerrero, Y., Dell Amico Rodríguez, J., & Núñez Vázquez, M. (2014). Aspectos fisiológicos, bioquímicos y expresión de genes en condiciones de déficit hídrico. Influencia en el proceso de germinación. Cultivos Tropicales, 35(3). http://www.scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0258-59362014000300003

Sanoubar, R; Calone, R.; Noli, E.; & Barbanti, L. (2018). Data on seed germination using LED versus fluorescent light under growth chamber conditions. Data in Brief, 19,594–600. https://doi.org/10.1016/j.dib.2018.05.040

Shobo, B. A., Joseph-Adekunle, T. T., Ogunleye, M. T., Akintunde, A. O., Afootu, O. J., & Bodunde, G. J. (2023). Growth, fruit characteristics and seed yield of tomato (Lycopersicon esculentum Mill) in response to fertilizer application. Indian Journal of

Agricultural Research. https://doi.org/10.18805/IJARE.AF-705

Steinbrecher, T., & Leubner-Metzger, G. (2017). The biomechanics of seed germination. Journal of Experimental Botany, 68(4), 765–783. https://doi.org/10.1093/jxb/erw428

Vega-Corrales, E., Campos-Sánchez, V., Monge-Vargas, A. A., Bertsch-Hernández, S., & Vargas-Ramírez, E. (2022). Morphology and viability test optimization in seeds of Passiflora spp. from Costa Rica. Agronomy Mesoamerican, 33, 51567. https://doi.org/10.15517/am.v33iEspecial.51567

Wu, H., Asaduzzaman, M., Shephard, A., Hopwood, M., & Ma, X. (2020). Germination and emergence characteristics of prickly lettuce (Lactuca serriola L.). Crop Protection, 136, 105222. https://doi.org/10.1016/j.cropro.2020.105222

Downloads

Published

2025-04-15

How to Cite

ALVA-OBREGÓN , D. M. ., FIGUEROA- SERRUDO , C. E. ., & IRCAÑAUPA- HUAMANI, E. . (2025). Effect of light type and mechanical scarification on the germination of passion fruit seeds (Passiflora edulis var. flavicarpa). Peruvian Journal of Agronomy, 9(1), 1-15. https://doi.org/10.21704/pja.v9i1.2014