Morphological and nutritional characterization of sorghum (Sorghum bicolor L. Moench) accession collected in a typical guinea savanna ecology

Authors

  • Folusho Anuoluwapo BANKOLE University of Ilorin, Faculty of Agriculture, Nigeria Department of Agronomy https://orcid.org/0000-0002-7825-4487
  • Olawale Serifdeen ABODERIN University of Ilorin, Faculty of Agriculture, Nigeria Department of Agronomy https://orcid.org/0009-0003-7435-1022
  • Kehinde Shukurat IBIYINKA University of Ilorin, Faculty of Agriculture, Nigeria Department of Agronomy.
  • Olasunkanmi OLAJIDE University of Ilorin, Faculty of Agriculture, Nigeria Department of Agronomy .
  • Mobolaji Omolabake MUSA University of Ilorin, Faculty of Agriculture, Department of Agricultural Extension and Rural Development, Nigeria. https://orcid.org/0009-0001-8393-8998

DOI:

https://doi.org/10.21704/pja.v9i1.2215

Keywords:

Nutritional traits, , antinutritional traits, variation, accessions, Principal component analysis

Abstract

Germplasm collection and characterization are crucial for crop improvement. Twenty different sorghum accessions collected from Kwara State, Nigeria, were evaluated over two years (2021 and 2022) at the University of Ilorin Research field to assess their morphological and nutritional diversity. Morphological traits such as plant structure, leaf orientation, panicle characteristics, seed attributes, and nutritional components such as carbohydrates, proteins, fats, and anti-nutritional factors (oxalate, phytate, HCN, phenolics, tannins) were evaluated. Analysis of variance revealed that weight at harvest and grain weight had high genotypic (GCV) and phenotypic (PCV) coefficients of variation (> 20 %), while other morphological traits exhibited low to moderate GCV and PCV values (10 % – 20 %). Nutritional traits such as phytate, moisture, ash content, carbohydrates, lipids, and fiber showed moderate GCV and PCV, while oxalate, HCN, phenolics, tannins, and protein content exhibited high variability. Principal Component Analysis identified days to flowering, leaf orientation, and plant height as important selection criteria in sorghum breeding programs, while fiber, carbohydrates, lipids, and phytate were key nutritional traits influencing the dietary value and quality of sorghum grains. Hierarchical clustering based on morphological traits grouped the accessions into four distinct clusters, while clustering by nutritional attributes classified them into three groups, each varying in levels of antinutrients, bioactive compounds, and macronutrients. Sorghum accessions identified in each cluster with superior traits offer opportunities for targeted breeding programs aimed at enhancing sorghum productivity, resilience, and nutritional value.

Downloads

Download data is not yet available.

Author Biography

  • Kehinde Shukurat IBIYINKA, University of Ilorin, Faculty of Agriculture, Nigeria Department of Agronomy.

    Department of Agronomy, Faculty of Agriculture

References

Aboderin, O. S., Bankole, F. A., Oyekunle, M., & Olaoye, G. (2023). Yield stability and inter-trait relationships of maize hybrids under low- and optimum-nitrogen conditions. Agriculture (Poľnohospodárstvo), 69(4), 171–185. https://doi.org/10.2478/agri-2023-0015

Ajeigbe, H. A., Akinseye, F. M., Jonah, J., & Kunihya, A. (2018). Sorghum yield and water use under phosphorus fertilization applications in the Sudan Savanna of Nigeria. Global Advanced Research Journal of Agricultural Science, 7(8), 245–257.

Association of Official Analytical Collaboration [AOAC] (2019). Official Methods of Analysis of AOAC INTERNATIONAL (21st ed.). Washington, DC: AOAC International.

Awika, J. M., Rooney, L. W., Wu, X., Prior, R. L., & Cisneros-Zevallos, L. (2003). Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. Journal of Agricultural and Food Chemistry, 51(23), 6657–6662. https://doi.org/10.1021/jf034790i

Awika, J. M., & Rooney, L. W. (2004). Sorghum phytochemicals and their potential impact on human health. Phytochemistry, 65(9), 1199–1221. https://doi.org/10.1016/j.phytochem.2004.04.001

Belton, P., & Taylor, J. (2004). Sorghum and millets: Protein sources for Africa. Trends in Food Science and Technology, 15(2), 94–98. https://doi.org/10.1016/j.tifs.2003.09.002

Boyles, R. E., Pfeiffer, B. K., Cooper, E. A., Rauh, B. L., Zielinski, K. J., Myers, M. T., Brenton, Z., Rooney, W. L., & Kresovich, S. (2017). Genetic dissection of sorghum grain quality traits using diverse and segregating populations. Theoretical and Applied Genetics, 130(4), 697–716. https://doi.org/10.1007/s00122-016-2844-6

Chakrabarty, S., Mufumbo, R., Windpassinger, S., Jordan, D., Mace, E., Snowdon, R., & Hathorn, A. (2022). Genetic and genomic diversity in the sorghum gene bank collection of Uganda. BMC Plant Biology, 22(378). https://doi.org/10.1186/s12870-022-03770-y

Chavan, U., Kajjidoni, S., Shinde, M., Dalvi, U., Nirmal, S., Patil, V., Awari, V. R., Pawar, G., & Jadhav, A. (2017). Regional effect on nutritional quality of sorghum genotypes. International Journal of Current Microbiology and Applied Sciences, 6(11), 75–85. https://doi.org/10.20546/ijcmas.2017.611.010

Cruz, C. D., Carneiro, P. C. S., & Regazzi, A. J. (2014). Modelos Biométricos Aplicados ao Melhoramento Genético (3rd ed.). Viçosa, Brazil: UFV.

Dlamini, N. R., Taylor, R. N., & Rooney, L. W. (2007). The effect of sorghum type and processing on the antioxidant properties of African sorghum-based foods. Food Chemistry, 105(4), 1412–1419. https://doi.org/10.1016/j.foodchem.2007.05.017

Dykes, L., & Rooney, L.W. (2006). Sorghum and millet phenols and antioxidants. Journal of Cereal Science, 44(3), 236–251. https://doi.org/10.1016/j.jcs.2006.06.007

Food and Agriculture Organization [FAO] (2020). FAO Statistical Database (online). Food and Agricultural Organization of the United Nations, Rome. http://www.fao.org/faostat/en/#data/QC

Fracasso, A., Magnanini, E., Marocco, A., & Amaducci, S. (2017). Real-time determination of photosynthesis, transpiration, water-use efficiency, and gene expression of two Sorghum bicolor (Moench) genotypes subjected to dry-down. Frontiers in Plant Science, 8, 932. https://doi.org/10.3389/fpls.2017.00932

Hair, J. F., Tatham, R. L., Anderson, R. E., & Black, W. (1998). Multivariate Data Analysis (5th ed.). London, UK: Prentice-Hall International Inc. ISBN: 978-0138948580.

Hegde, S., Thangalakshmi, S., & Singh, R. (2023). A review of gluten and sorghum as a gluten-free substitute. Trends in Horticulture, 6(2), 1–17. https://doi.org/10.24294/th.v6i2.2840

Jain, S. K., & Patel, P. R. (2016). Principal component and cluster analysis in sorghum (Sorghum bicolor (L.) Moench). Forage Research, 42, 90–95.

Kavithamani, D., Yuvaraja, A., & Selvi, B. (2019). Principal component analysis and grouping of sorghum (Sorghum bicolor L. Moench) gene pool for genetic diversity. Electronic Journal of Plant Breeding, 10(4), 1426–1434.

Mohammadi, S. A., & Prasanna, B. M. (2003). Analysis of genetic diversity in crop plants: Salient statistical tools and considerations. Crop Science, 43(4), 1235–1248. https://doi.org/10.2135/cropsci2003.1235

Motlhaodi, T., Geleta, M., Chite, S., Fatih, M., Ortiz, R., & Bryngelsson, T. (2017). Genetic diversity in sorghum (Sorghum bicolor (L.) Moench) germplasm from Southern Africa as revealed by microsatellite markers and agro-morphological traits. Genetic Resources and Crop Evolution, 64, 599–610. https://doi.org/10.1007/s10722-016-0388-x

Murtagh, F., & Legendre, P. (2014). Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? Journal of Classification, 31, 274–295. https://doi.org/10.1007/s00357-014-9161-z

Ni, C., Zhang, S., Gaopeng, Z., Jianjun, C., & Huanyu, Z. (2019). Evaluation of edible quality of sorghum based on principal component analysis. Journal of Chemistry, 2019(1), 2013109 https://doi.org/10.1155/2019/2013109

Olakojo, O., Bankole, F., & Ogunniyan, D. (2021). Correlation, regression, and cluster analyses on yield attributes and popping characteristics of popcorn (Zea mays L. everta) in derived savanna and rainforest agro-ecologies of Nigeria. Acta Agriculturae Slovenica, 117(3), 1–11. https://doi.org/10.14720/aas.2021.117.3.1625

Perazzo, A., Carvalho, G., Santos, E., Pinho, R., Campos, F., Macedo, C., Azevedo, J., & Tabosa, J. (2014). Agronomic evaluation of 32 sorghum cultivars in the Brazilian semi-arid region. Revista Brasileira de Zootecnia, 43(05), 232–237. https://doi.org/10.1590/S1516-35982014000500002

Pranay, G., Shashibhushan, D., Rani, K. J., Bhadru, D., & Kumar, C. V. (2022). Genotype and phenotype coefficient of variance in maize (Zea mays L.). International Journal of Environment and Climate Change, 12(12), 1119–1132. https://doi.org/10.9734/ijecc/2022/v12i121550

Queiroz, V., Silva, C., Menezes, C., Schaffert, R., Guimarães, F., Guimarães, L., Evaristo, P., & Tardin, F. (2015). Nutritional composition of sorghum (Sorghum bicolor (L.) Moench) genotypes cultivated without and with water stress. Journal of Cereal Science, 65, 103–111. https://doi.org/10.1016/j.jcs.2015.06.018

Rhodes, D. H., Hoffmann, L., Rooney, W. L., Herald, T., Bean, S., Boyles, R., Brenton, Z., & Kresovich, S. (2017). Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics, 18(1), 15. https://doi.org/10.1186/s12864-016-3403-x

Rooney, W. L. (2004). Sorghum improvement: Integrating traditional and new technology to produce improved genotypes. Advances in Agronomy, 83, 37–109. https://doi.org/10.1016/s0065-2113(04)83002-5

SAS Institute Inc. (2008). SAS/STAT Software 9.2. Cary, NC, USA: SAS Institute.

Sivasubramanian, S., & Madhavamenon, P. (1973). Genotypic and phenotypic variability in rice. Madras Agricultural Journal, 60(9/12), 1093–1096.

Stagnati, L., Busconi, M., Soffritti, G., Martino, M., Lanubile, A., & Marocco, A. (2021). Molecular and phenotypic characterization of a collection of white grain sorghum (Sorghum bicolor (L.) Moench) for temperate climates. Genetic Resources and Crop Evolution, 68, 2931–2942. https://doi.org/10.1007/s10722-021-01166-9

Tasie, M. M., & Gebreyes, B. G. (2020). Characterization of nutritional, antinutritional, and mineral contents of thirty-five sorghum varieties grown in Ethiopia. International Journal of Food Science, 2020 (1), 8243617 https://doi.org/10.1155/2020/8243617

Verma, R. J., Ranwah, B. R., Barti, B., Kumar, R., Kunwar, R., Diwaker, A., & Meena, M. (2017). Characterization of sorghum germplasm for various qualitative traits. Journal of Applied and Natural Science, 9(2), 1002–1007. https://doi.org/10.31018/jans.v9i2.1311

Waniska, R. D., Rooney, L. W., & McDonough, C. (2004). Sorghum utilization. Encyclopedia of Grain Science (pp. 126–136). Cambridge, MA, USA: Academic Press. https://doi.org/10.1016/B0-12-765490-9/00152-X

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845

Xiong, Y., Zhang, P., Warner, R. D., & Fang, Z. (2019). Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Comprehensive Reviews in Food Science and Food Safety, 18(6), 2025–2046. https://doi.org/10.1111/1541-4337.12506

Yahaya, M., Shimelis, H., Nebié, B., Ojiewo, C., & Danso-Abbeam, G. (2022). Sorghum production in Nigeria: Opportunities, constraints, and recommendations. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 72(1), 660–672. https://doi.org/10.1080/09064710.2022.2047771

Downloads

Published

2025-04-15

How to Cite

BANKOLE, F. A., ABODERIN, O. S., IBIYINKA, K. S., Olasunkanmi , O. ., & MUSA, M. O. (2025). Morphological and nutritional characterization of sorghum (Sorghum bicolor L. Moench) accession collected in a typical guinea savanna ecology. Peruvian Journal of Agronomy, 9(1), 16-30. https://doi.org/10.21704/pja.v9i1.2215