Control of Botrytis cinerea Pers. in “Huascaran” tomato by foliar fertilizer on the coast of Lima, Peru
DOI:
https://doi.org/10.21704/pja.v6i3.1670Keywords:
Botrytis cinerea Pers., foliar fertilizers, copper, zinc, citric acid, tomatoAbstract
Botrytis cinerea Pers. (B.C.) is the phytopathogen responsible for a wide range of symptom in crops of great importance, such as tomato. Fungicide application are mainly used to control this pathogen; however, their excessive use leads to the development of resistant strains, environmental pollution, and harmful effects on human health. Thus, the aim of the study was to evaluate the effects of two foliar fertilizers contain copper, zinc, and citric acid to reduce gray mold B.C. damage in “Huascarán” tomato plants. In laboratory conditions, the effects of the foliar fertilizers on the inhibition of mycelial growth at 6 DAI (days after inoculation) with poisoned PDA (Potato Dextrose Agar) medium were evaluated; and in the field conditions, the foliar fertilizers were sprayed by eight weeks varying the application frequency in one and two weeks. The results showed that in laboratory condition the citric acid improved the antifungal activity complementing well with the Cu and Zn particles presenting T3 the better percentage of mycelial growth inhibition. Under field conditions, most of the foliar applications had a significant control of B.C. on foliage but not on flowers and fruits; especially when foliar fertilizers were applied weekly. These results are important to develop strategies to improve disease control and to decrease excessive use of fungicides.
Downloads
References
Alzate, D., Gonzalo, M., Afanador, L., Durango, D., & Garcìa, C. (2009). Evaluación de la fitotoxicidad y la actividad antifúngica contra Colletotrichum acutatum de los aceites esenciales de tomillo (Thymus vulgaris), limoncillo (Cymbopogon citratus), y sus componentes mayoritarios. VITAE, 16(1), 116–125. https://www.redalyc.org/articulo.oa?id=169815393013
Benito, P., Arranz, M., & Eslava, P. (2000). Factores de patogenicidad de Botrytis cinerea. Revista Iberoamericana de Micología, 17, 43–46. http://www.reviberoammicol.com/2000-17/S43S46.pdf
Cabot, C., Martos, S., Llugany, M., Gallego, B., Tolra, R., & Poschenrieder, C. (2019). A Role for Zinc in Plant Defense Against Pathogens and Herbivores. Plant Sci, 10. https://doi.org/10.3389/fpls.2019.01171
Campbell, C. & Madden, L. (1990). Introduction to Plant Disease Epidemiology. New York, U.S: Wiley.
Chmielowska, J., Veloso, J., Gutiérrez, J., Silvar, C., & Díaz, J. (2010). Cross-portection of pepper plants stressed by copper against a vascular pathogen is accompanied by the induction of a defence response. Plant Sciences, 178, 176–182. https://doi.org/10.1016/j.plantsci.2009.11.007
Cristescu, S., De Martinis, D., Lintel Hekkert, S., Parker, D., & Harren, F. (2002). Ethylene Production by Botrytis cinerea In Vitro and in Tomatoes. Applied and Environmental Microbiology, 68(11), 5342–5350. https://doi.org/10.1128/AEM.68.11.5342-5350.2002
Dean, R., Van, J., Pretorius, Z., Hammond-Kosack, K., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M. Kahmann, Marty, Ellis, J., & Foster, G. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13(4), 414–430. https://doi.org/10.1111/j.1364-3703.2011.00783.x
Elad, Y., & Evensen, K. (1995). Physiological Aspects of Resistance to Botrytis cinerea. The American Phytopathological Society, 85(6), 637–643. https://doi.org/10.1094/Phyto-85-637
Elad, Y. (1992). The use of antioxidants (free radical scavengers) to control grey mould (Botrytis cinerea) and white mould (Sclerotinia sclerotiomm) in various crops. Plant Pathology, 41(4), 417–426. https://doi.org/10.1111/j.1365-3059.1992.tb02436.x
Elkorany, A., & Mohamed, R. (2008) . The use of antioxidants to control grey mould and to enhance yield and quality of strawberry. Journal of Agricultural 7(1), 1–30.
Espinosa, M. (2006). Estudio de la Variabilidad Genética y Organización Cromosómica en el Hongo Fitopatógeno Botrytis cinerea [Doctoral dissertation, Universidad de Cádiz]. https://docplayer.es/9712439-Estudio-de-la-variabilidad-genetica-y-organizacion-cromosomica-en-el-hongo-fitopatogeno-botrytis-cinerea.html
Fageria, N., Barbosa, F., Moreira, A., & Guimaraes, C. (2009). Foliar Fertilization of Crop Pants. Journal of Plant Nutrition, 32, 1044–1064. https://doi.org/10.1080/01904160902872826
He, L., Liu, Y., Mustapha, A., & Lin, M. (2011). Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3), 207–215. https://doi.org/10.1016/j.micres.2010.03.003
Kalia, A., Abd-Elsalam, K., & Kuca, K. (2020). Zinc-Based Nanomaterials for Diagnosis and Management of Plant Diseases: Ecological Safety and Future Prospects. Journal of Fungi, 6(4), 222–224. https://doi.org/10.3390/jof6040222
La Torre, A., Iovino, V. & Caradonia, F. (2018). Copper in plant protection: current situation and prospects. Phytopathologia Mediterranea, 57(2), 201−236. https://doi.org/10.14601/Phytopathol_Mediterr-23407
Mauricio, O. (2018). Aproximación al manejo de afecto de Botrytis cinerea en cultivos de tomate producido en el municipio de Fómeque, Cundinamarca [Master’s thesis, Universidad Nacional de Colombia]. UN campus repository. https://repositorio.unal.edu.co/handle/unal/68912
Molina, G., Zaldúa, S., González, G., & Sanfuentes, E. (2006). Selección de hongos antagonistas para el control biológico de Botrytis cinerea en viveros forestales en Chile. Bosque, 27(2), 126−134. http://dx.doi.org/10.4067/S0717-92002006000200007
Morgunov, I., Kamzolova, S., Dedyukhina, E., Chistyakova, T., Lunina, J., Mironov, A., Stepanova, N., Shemshura, O., & Vainshtein, M. (2017). Application of organic acids for plant protection against phytopathogens. Applied Microbiology and Biotechnology, 101(3), 921–932. https://doi.org/10.1007/s00253-016-8067-6
Ouda, S. (2014). Antifungal Activity of Silver and Copper Nanoparticles on Two Plant Pathogens, Alternaria alternata and Botrytis cinerea. Research Journal of Microbiology, 9(1), 34-42. https://doi.org/10.3923/jm.2014.34.42
Pérez, D. (2014). Evaluación del cultivo de tomate (Solanum lycopersicum L.) en monocultivo y asociado bajo manejo orgánico en La Molina [Bachelor’s thesis, Universidad Nacional Agraria La Molina]. Intitucional repository. https://hdl.handle.net/20.500.12996/2340
Rai, M., Ingle, A., Pandit, R., Paralikar, P., Shende, S., Gupta, Biswas, J. K., & Silvério da Silva, S (2018). Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotechnology Reviews, 7(4), 303–315. https://doi.org/10.1515/ntrev-2018-0031
Shah, P., Powell, A., Orlando, R., Bergmann, C., & Gutierrez-Sanchez, G. (2012). Proteomic Analysis of Ripening Tomato Fruit Infected by Botrytis cinerea. Journal of Proteome Research, 11(4), 2178–2192. https://doi.org/10.1021/pr200965c
Shokri, H. (2011). Evaluation of inhibitory effects of citric and tartaric acids and their combination on the growth of Trichophyton mentagrophytes, Aspergillus fumigatus, Candida albicans, and Malassezia furfur. Comparative Clinical Pathology, 20(5), 543–545. https://doi.org/10.1007/s00580-011-1195-6
Singh, A, Singh, N., Shadma, A, Singh, T., & Hussain, I. (2018). Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science, 53, 185–201. https://doi.org/10.1007/s10853-017-1544-1
Tejada, J. (2014). Respuesta de productos inductores de la defensa en el control del moho gris (Botrytis cinerea Mill.) en cultivo de tomate [Master’s thesis, Universidad Nacional San Luis Gonzaga].
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Hugo Benny Casimiro Melgarejo, Liliana María Aragón Caballero, Andrés Virgilio Casas Díaz, Norma Bustamante Huaman
This work is licensed under a Creative Commons Attribution 4.0 International License.