Combination of two bacterial strains Bradyrhizobium sp and Bacillus sp as Biofertilizer and Biocontrol in the Cultivation of Tarwi (Lupinus mutabilis Sweet) in the Peruvian Highlands
DOI:
https://doi.org/10.21704/pja.v7i1.2002Keywords:
Lupinus mutabilis, plant growth promoters, biocontrollers, biofertilizers, iostimulantsAbstract
It is very important to know adequately the association of beneficial microorganisms of soil with crops, in order to learn on its biofertilizer and biocontrol effects, which will allow to improve the growth and yield of the crops. The evaluation of the co-inoculation of bacteria that promote plant growth by different mechanisms in plants challenged by pathogens would contribute to increase the knowledge of the interactions of plants with different microorganisms. The aim of this research was to evaluate the biofertilizer and biocontroller effects through the bioinoculations of Bradyrhizobium and Bacillus spp. strains association. Both effects were measured during plant growing through the variable response against to Anthracnose disease on yield and seed nutrient content, using Altagracia variety. The experiment was carried out in Paltash locality at 3100 m.a.s.l. in the District of Marcará, Carhuaz, Ancash Region. Three treatments were tested: i) Bradyrhizobium + Bacillus bioinoculants, ii) a chemical treatment, and iii) a control (without bioinoculants or chemicals). The field experiment was carried out under randomized complete block design (RCBD) with four blocks. The following parameters were evaluated: 1) The fresh and dry weight of the aerial part, root and nodules at 60 days; 2) Anthracnose severity during flowering, pod filling and harvesting; and 3) Seed nutrient content. Statistical analysis was performed using Duncan’s test (95 % CI). Results obtained indicate that the bioinoculated plants presented the best nodule characteristics; likewise, bioinoculation reduced the degree of Anthracnose severity in the different phenological stages. It is concluded that bioinoculations improved tarwi growth and anthracnose control.
Downloads
References
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., & Meftah Kadmiri, I. (2021). Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in microbiology, 12, 628379. https://doi.org/10.3389/fmicb.2021.628379
Ahmad, B., Raina, A., & Khan, S. (2019). Impact of biotic and abiotic stresses on plants, and their responses. In: S. H. Wani, (ed.), Hussain,Disease resistance in crop plants (pp. 1–19). Springer, Cham. https://doi.org/10.1007/978-3-030-20728-1_12
Arif, M. S., Shahzad, S. M., Riaz, M., Yasmeen, T., Shahzad, T., Akhtar, M. J., Bragazza, L., & Butler, A. (2017). Nitrogen ‐ enriched compost application combined with plant growth ‐ promoting rhizobacteria (PGPR) improves seed quality and nutrient use efficiency of sunflower. Journal of Plant Nutrition and Soil Science, 180(4),1–10. https://doi.org/10.1002/jpln.201600615
Bashan Y., Holguin G., & De-Bashan (2004) L. Azospirillum - plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Canadian Journal of Microbiology, 50(8), 521–577. https://doi.org/10.1139/w04-035
Bautista, D., Corrales Ramírez, M. S. C., Cuervo Andrade, L. C., González, L., Guevara, M., & Sánchez Leal, M. S. C, (2010). Evaluation of the biocontrol effect of Bacillus spp., against Fusarium spp., under greenhouse conditions in Rosmarinus officinalis L. Nova, 8(13), 63–75. https://doi.org/10.22490/24629448.440
Camarena, M. F., Huaringa, J. A., Jiménez, D. J., & Mostacero de Bustillos, E. (2012). Revaloración de un cultivo subutilizado Chocho o Tarwi (Lupinus mutabilis Sweet). Second edition. Universidad Agraria la Molina AGRUM.
Castañeda, B., Manrique, R., Gamarra, F., Muñoz, A., Ramos, F., Lizaraso, & F. Martínez, J. (2008). Probiotic made from the seeds of Lupinus mutabilis Sweet. Acta Médica Peruana, 25(4), 210–215.
Castillo-Reyes, F., Hernandez-Castillo, F., Gallegos-Morales, G., Flores-Olivas, A., Rodriguez-Herrera, R. (2015). In vitro effectiveness of Bacillus and polyphenols from native Mexican plants on Rhizoctonia-Solani. Mexican Journal of Agricultural Sciences, 6(3), 549–562. https://doi.org/10.29312/remexca.v6i3.638
Chincheros J. (1996). Selección de aislamiento de Bradyrhizobium lupini a partir de plantas de tarwi (Lupinus mutabilis Sweet). [Bachelor Thesis, Universida Mayor de San Andres].
de Souza Vandenberghe, L. P., Garcia, L. M. B., Rodrigues, C., Camara, M. C., de de Melo Pereira, G. V., de Oliveira, J., & Soccol, C. R. (2017). Potential applications of plant probiotic microorganisms in agriculture and forestry. AIMS Microbiology, 3(3), 629–648. https://10.3934/microbiol.2017.3.629
Deaker R., Roughley J. y Kennedy R. (2004). Legume seed inoculation technology a review. Soil Biology and Biochemistry, 36(8)1275–1288. https://doi.org/10.1016/j.soilbio.2004.04.009
Diaz, P. A. E., Baron, N. C., & Rigobelo, E. C. (2019). ‘Bacillus’ spp. as plant growth-promoting bacteria in cotton under greenhouse conditions. Australian Journal of Crop Science, 13(12), 2003–2014. https://search.informit.org/doi/10.3316/informit.958243517246376
Falconi, C. (2012). Lupinus mutabilis in Ecuador with special emphasis on anthracnose resistance. [Doctoral dissertation, Wageningen University], Wageningen University and Research. https://library.wur.nl/WebQuery/wurpubs/423906
Hashmi, I., Paul, C., Al-Dourobi, A., Sandoz, F., Deschamps, P., Junier, T., Junier P. & Bindschedler, S. (2019). Comparison of the plant growth-promotion performance of a consortium of Bacilli inoculated as endospores or as vegetative cells. FEMS Microbiology Ecology, 95(11), fiz147. https://doi.org/10.1093/femsec/fiz147
Huasasquiche, L., Moreno, P. y Jiménez, J. (2020). Caracterización y evaluación del potencial PGPR de la microflora asociada al cultivo de tarwi (Lupinus mutabilis Sweet). Ecologia Aplicada, 19(2), 65–76. http://dx.doi.org/10.21704/rea.v19i2.1557
Jamiołkowska, A., Księżniak, A., Gałązka, A., Hetman, B., Kopacki, M., & Skwaryło-Bednarz, B. (2018). Impact of abiotic factors on development of the community of arbuscular mycorrhizal fungi in the soil: a Review. International Agrophysics, 32(1), 133.
Kakraliya, S. K., Singh, U., Bohra, A., Choudhary, K. K., Kumar, S., Meena, R. S., & Jat, M. L. (2018). In R. Meena, A. Das, G. Yadav, & R. Lal. (Eds.), Nitrogen and Legumes: A Meta-analysis. Legumes for Soil Health and Sustainable Management (pp. 277–314). Springer. https://doi.org/10.1007/978-981-13-0253-4_9
Kassambara, A., & Mundt, F. (2020). _factoextra: Extract and Visualize the Results of Multivariate Data Analyses_. R package (version 1.0.7). https://CRAN.R-project.org/package=factoextra
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01
López, A. I. S., Pazos, V., & Torres, D. (2005). Isolation and selection of bacteria belonging to the genus Bacillus with potential for biological control in tobacco seedbeds. Centro Agrícola, 32(3), 25–29.
Memenza, M., Mostacero, E., Camarena, F., & Zuñiga, D. (2016). Disease control and plant growth promotion (PGP) of selected bacterial strains in Phaseolus vulgaris. In F. Gonzales-Andres & E. James (eds.), Biological Nitrogen Fixation and Beneficial Plant-Microbe Interactions (pp. 237–245). Springer. https://doi.org/10.1007/978-3-319-32528-6_20
Memenza-Zegarra M, & Zúñiga-Dávila D. (2019). Isolation and Characterization of antifungal secondary metabolites produced by rhizobacteria from common bean. In D. Zúñiga-Dávila, D., Gonzáles-Andrés, F., Ormeño-Orrillo, E. (eds.), Microbial Probiotics for Agricultural Systems, Sustainability in Olant and Crop Protection (pp.141-153). Springer. https://doi.org/10.1007/978-3-030-17597-9_9
Mendiburu F (2021). Agricolae: Statistical Procedures for Agricultural Research_. R package (version 1.3-5). https://CRAN.R-project.org/package=agricolae
Mollinedo, O., Angulo, M., & Ortuño, N. (2018). Respuesta de tarwi a la inoculación con cepas de rizobias aisladas de plantas silvestres y cultivadas de Lupinus a nivel de invernadero. Rivista de Agricultura, 57, 51–61. http://www.agr.umss.edu.bo/revAGRIC/pdf/rev57/rev57-7.pdf
Monroy-Guerrero, M., Memenza-Zegarra, M., Taco, N., Mostacero, E., Ogata-Gutiérrez, K., Huaringa-Joaquín, A., Camarena, F., & Zúñiga-Dávila, D. (2022). Co-Inoculation of Bradyrhizobium spp. and Bacillus sp. on Tarwi (Lupinus mutabilis Sweet) in the High Andean Region of Peru. Agronomy, 12(9), 2132. https:// doi.org/10.3390/agronomy12092132
Orberá, T., Pérez, I., Ferrer, D., Cortés, N., & González, Z. (2005). Aislamiento de cepas del género bacillus sp. Con potencialidades para la bioprotección y la estimulación del crecimiento vegetal. Revista Cubana de Química, 17(1), 189–195.
Posit team (2022). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. http://www.posit.co/.
R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
Richardson, A. E., Barea, J. M., McNeil, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil, 321, 305–339. https://doi.org/10.1007/s11104-009-9895-2
Schloerke B, Cook D, Larmarange J, Briatte F, Marbach M, Thoen E, Elberg A, Crowley J (2021). _GGally: Extension to ‘ggplot2’_R package (version 2.1.2). https://CRAN.R-project.org/package=GGally
Shamseldin, A. (2022). Future Outlook of Transferring Biological Nitrogen Fixation (BNF) to Cereals and Challenges to Retard Achieving this Dream. Curr Microbiol 79, 171. https://doi.org/10.1007/s00284-022-02852-2
Steinberga, V., Alsina, I., Ansevica, A., Dubova, L., & Liepina, L. (2008). The evaluation of effectiveness of Rhizobium lupini strains. AGRONOMIJAS VĒSTIS (Latvian Journal of Agronomy),10, 193–197
Sierra y Selva Exportadora (2021). Análisis de Mercado, Tarwi 202. MIDAGRI. https://cdn.www.gob.pe/uploads/document/file/2194218/An%C3%A1lisis%20de%20Mercado%20-%20Tarwi%202021.pdf?v=1632263656
Taco-Taype, N. & Zúñiga-Dávila D. (2020). Effect of inoculating Tarwi plants with Bradyrhizobium spp. isolated from a wild lupine, under greenhouse conditions. Peruvian Journal of Biology, 27(1), 35–42. http://www.scielo.org.pe/pdf/rpb/v27n1/1727-9933-rpb-27-01-35.pdf
Taipe, A. R. (2021). Evaluación del Efecto de Bradyrhizobium, en Rendimiento y Capacidad Simbiótica, en Dos Variedades de Tarwi (Lupinus mutabilis), en Buenavista – Lircay. [Bachelor Thesis, Universidad Para El Desarrollo Andino de Perú]. UDEA Institutional Repository. http://repositorio.udea.edu.pe/bitstream/UDEA/148/1/ALFREDO%20RAUL%20TAIPE%20SACHA.pdf
Zhao, L. F., Xu, Y. J., Ma, Z. Q., Deng, Z. S., Shan, C. J., & Wei, G. H. (2013). Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Brazilian Journal of Microbiology, 44(2), 629–637. https://doi.org/10.1590/S1517-83822013000200043
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Felix Camarena, Violeta Lazo, David Saravia, Amelia Huaringa-Joaquín, Pilar Caycho, Robert Quiñones, Elvia Mostacero, Doris Zúñiga-Dávila
This work is licensed under a Creative Commons Attribution 4.0 International License.