Impacto de la simbiosis micorrítica arbuscular en el crecimiento temprano del cultivo de tara (Caesalpinia spinosa (Molina) Kuntze)

Autores

  • Sheena Sangay-Tucto Facultad de Ciencias y Filosofía, Unidad de Biomineria y Medioambiente, Universidad Peruana Cayetano Heredia, Perú. Laboratoire des Symbioses Tropicales et Méditerranéennes-UMR 113, Instituto de Investigación para el Desarrollo (IRD), Francia.
  • Hervé Sanguin Laboratoire des Symbioses Tropicales et Méditerranéennes-UMR 113, Centro de Cooperación Internacional en Investigación Agronómica para el Desarrollo (CIRAD), Francia.
  • Estelle Tournier Laboratoire des Symbioses Tropicales et Méditerranéennes-UMR 113, Centro de Cooperación Internacional en Investigación Agronómica para el Desarrollo (CIRAD), Francia.
  • Jean Thioulouse Laboratoire de Biométrie et Biologie Évolutive, Universidad de Lyon, Francia.
  • Yves Prin Laboratoire des Symbioses Tropicales et Méditerranéennes-UMR 113, Centro de Cooperación Internacional en Investigación Agronómica para el Desarrollo (CIRAD), Francia.
  • Robin Duponnois

DOI:

https://doi.org/10.21704/rfp.v32i2.1040

Palavras-chave:

Caesalpinia spinosa, simbiosis arbuscular micorrítica, diversidad, dependencia micorrítica.

Resumo

Tara (Caesalpinia spinosa) ha sido cultivada durante muchos años en bosques naturales, principalmente para la recolección de sus vainas y sus semillas dado su alto valor por sus múltiples usos desde tiempos antiguos. Sin embargo, poco se conoce sobre la ecología y el estado de conservación de los bosques de tara. La simbiosis micorrítica puede desempeñar un rol central en el crecimiento temprano de esta leguminosa y constituye un componente clave para la mejora de las prácticas de manejo. El objetivo de este estudio fue describir el estado micorrítico de tara en plantaciones localizadas en Perú y evaluar el impacto micorrítico sobre el crecimiento temprano de plántulas de Tara en condiciones de invernadero. Los resultados mostraron que la tara se asoció principalmente con hongos micorríticos arbusculares de la familia Glomeraceae, notablemente Rhizophagus spp. La micorrización controlada con esporas de R. irregularis mejoró significativamente el crecimiento de tara en invernadero, así como la absorción de nutrientes como el fósforo (P) y el nitrógeno (N). Por lo tanto, C. spinosa podría ser considerada como “altamente dependiente de la micorriza”. Estos resultados destacan la necesidad de considerar la simbiosis micorrítica arbuscular para mantener en forma sostenible la productividad y estabilidad de las plantaciones de tara.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Balaguer, L; Arroyo-García, R; Jiménez, P; et al. 2011. Forest restoration in a fog oasis: evidence indicates need for cultural awareness in constructing the reference. PloS One 6:e23004 . doi: 10.1371/journal.pone.0023004

Bécard, G; Fortin, JA. 1988. Early events of vesicular arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol, 108: 211-218.

Bilgo, A; Sangare, SK; Thioulouse, J; Prin, Y; Hien, V; Galiana, A; Baudoin, E; Hafidi, M; Bâ, MA; Duponnois, R. 2012. Response of native soil microbial functions to the controlled mycorrhization of an exotic tree legume, Acacia holosericea in a Sahelian ecosystem. Mycorrhiza 22: 175-187

Boudiaf, I; Baudoin, E; Sanguin, H; Beddiar, A; Thioulouse, J; Galiana, A; Prin, Y; Le Roux, C; Lebrun, M; Duponnois, R. 2013. The exotic legume tree species, Acacia mearnsii, alters microbial soil functionalities and the early development of a native tree species Quercus suber, in North Africa. Soil Biol Biochem 65: 172-179

Brundrett, MC. 1991. Mycorrhizas in natural ecosystems. In: Macfayden, A; Begon, M and Fitter, AH (eds), advances in Ecological Research, Vol. 21. Academic Press Ltd, London, p. 171-313.

Cordero, I; Jimenez, MD; Delgado, JA; Villegas, L; Balaguer, L. 2016. Spatial and demographic structure of tara stands (Caesalpinia spinosa) in Peru: Influence of present and past forest management. For. Ecol. Manage. 377: 71-82

Dabire, AP; Hien, V; Kisa, M; Bilgo, A; Sangare, KS; Plenchette, C; Galiana, A; Prin, Y; Duponnois, R. 2007. Responses of soil microbial catabolic diversity to arbuscular mycorrhizal inoculation and soil disinfection. Mycorrhiza 17: 537-545

Dickie, IA; Koide, RT; Steiner, KC. 2002. Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecol Monogr 72: 505-521

Duponnois, R; Plenchette, C. 2003. A mycorrhiza helper bacterium (MHB) enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13: 85-91

Duponnois, R; Plenchette, C; Prin, Y; Ducousso, M; Kisa, M; Bâ, AM; Galiana, A. 2007. Use of mycorrhizal inoculation to improve reafforestation process with Australian Acacia in Sahelian ecozones. Ecol engin 29: 105-112

Edgar, RC; Haas, BJ; Clemente, JC; Quince, C; Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27: 2194-2200

Frioni, L; Minasian, H; Volfovicz, R. 1999. Arbuscular mycorrhizae and ectomycorrhizae in native tree legumes in Uruguay. For Ecol Manage 115: 41-47

Gihring, TM; Green, SJ; Schadt, CW. 2012. Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ Microbiol 14: 285-290

Habte, M; Manjunath, A. 1991. Categories of vesicular-arbuscular mycorrhizal dependency of host species. Mycorrhiza, 1: 3-12

Huse, SM; Welch, DM; Morrison, HG; Sogin, ML. 2010. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12: 1889-1898.

Ibanez, B; Gomez-Aparicio, L; Avila, JM; Perez- Ramos, IM; Garcia, LV; Maranon, T. 2015. Impact of tree decline on spatial patterns of seedling-mycorrhiza interactions: Implications for regeneration dynamics in Mediterranean forests. For Ecol Manage 353: 1-9

Kisa, M; Sanon, A; Thioulouse, J; Assigbetse, K; Sylla, S; Spichiger, R; Dieng, L; Berthelin, J; Prin, Y; Galiana, A; Lepage, M; Duponnois, R. 2007. Arbuscular mycorrhizal symbiosis can counterbalance the negative influence of the exotic tree species Eucalyptus camaldulensis on the structure and functioning of soil microbial communities in a sahelian soil. FEMS Microbiol Ecol 62: 32-44.

Kozich, JJ; Westcott, SL; Baxter, NT; Highlander, SK; Schloss, PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79: 5112-20

Krüger, M; Krüger, C; Walker, C; Stockinger, H; Schüssler, A. 2012. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New phytol 193: 970-984.

Larrea, M. 2011. La tara, guarango o taya (Caesalpinia spinosa) en la región andina: criterios ambientales para la sustentabilidad de su aprovechamiento y manejo en Bolivia, Ecuador y Perú. ECOBONA, Serie de Capacitación No. 5. Programa Regional ECOBONA-INTERCOOPER, Quito, Peru.

Lee, J; Lee, S; Young, JPW. 2008. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65: 339-349

Manaut, N; Sanguin, H; Ouahmane, L; Bressan, M; Thioulouse, J; Baudoin, E; Galiana, A; Hafidi, M; Prin, Y; Duponnois, R. 2015. Potentialities of ecological engineering strategy based on native arbuscular mycorrhizal community for improving afforestation programs with carob trees in degraded environment. Ecol Eng 79: 113-119

Niklas, KJ; Midgley, JJ; Rand, RH. 2003. Tree size frequency distributions, plant density, age and community disturbance. Ecol Lett 6: 405-411.

Öpik, M; Vanatoa, A; Vanatoa, E; Moora, M; Davison, J; Kalwij, JM; Reier, U; Zobel, M. 2010. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188: 223-241.

Ouahmane, L; Hafidi, M; Plenchette, C; Kisa, M; Boumezzough, A; Thioulouse, J; Duponnois, R. 2006. Lavandula species as accompanying plants in Cupressus replanting strategies: effect on plant growth, mycorrhizal soil infectivity and soil microbial catabolic diversity. Appl Soil Ecol 34: 190-199

Plenchette, C; Fortin, JA; Furlan, V. 1983. Growth responses of several plant species to mycorrhizae in a soil of moderate P fertility: I. Mycorrhizal dependency under field conditions. Plant Soil 70: 199-209

Portillo-Quintero, CA; Sánchez-Azofeifa, GA. 2010. Extent and conservation of tropical dry forests in the Americas. Biol. Conserv. 143:144-155.

Rosendahl, S; McGee, P; Morton, JB. 2009. Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 18: 4316-4329.

Sanon, A. 2009. Le concept de niche écologique associé à la co-existence des espèces végétales : mise en évidence du rôle de la symbiose mycorhizienne et de sa microflore associée dans la structuration de la strate herbacée en milieu tropical.

van der Heijden, MGA; Klironomos, JN; Ursic, M; Moutoglis, P; Streitwolf-Engel, R; Boller, T; Wiemken, A; Sanders, IR. 1998. Mycorrhizal fungal diversity determines plant bio-diversity, ecosystem variability and productivity. Nature 396: 69-72.

van der Heijden, MGA; Streitwolf-Engel, R; Riedl, R; et al. 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172:739–752.

Varghese, A; Ticktin, T; Mandle, L; Nath, S. 2015. Assessing the effects of multiple stressors on the recruitment of fruit harvested trees in a tropical dry forest, Western Ghats, India. PLoS One 10, e0119634.

Wiegand, T; Moloney, KA. 2004. Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104: 209-229.

Publicado

2017-12-15

Edição

Secção

Artículos originales

Como Citar

Sangay-Tucto, S., Sanguin, H., Tournier, E., Thioulouse, J., Prin, Y., & Duponnois, R. (2017). Impacto de la simbiosis micorrítica arbuscular en el crecimiento temprano del cultivo de tara (Caesalpinia spinosa (Molina) Kuntze). Revista Forestal Del Perú, 32(2), 89-96. https://doi.org/10.21704/rfp.v32i2.1040