Reduction of pH by homolactic fermentation as indicator of fecal coliform inactivation in wastewater

Autores/as

  • Jean Poll Alva-Araujo Department of Environmental Engineering / La Molina National Agrarian University. Av. La Molina s/n, Lima 12 / Perú.
  • Gustavo A. Cano-Arcos Department of Environmental Engineering / La Molina National Agrarian University. Av. La Molina s/n, Lima 12 / Perú.
  • Juan G. Juscamaita-Morales Academic Department of Biology / La Molina National Agrarian University. Av. La Molina s/n, Lima 12 / Perú.
  • Lawrence Quipuzco Ushñahua Science Faculty / La Molina National Agrarian University. Av. La Molina s/n, Lima 12 / Perú.

DOI:

https://doi.org/10.21704/rea.v20i1.1693

Palabras clave:

wastewater, treatments, lactic acid, pathogen, fecal coliform.

Resumen

The purpose of this research was to evaluate the capability of lactic acid bacteria (LAB) to remove pathogens present in domestic wastewater, generated in the eco-touristic circuit Lomas de Lucumo (Lima, Peru). The pH decrease was used as an indicator of the elimination of fecal coliform bacteria in the treated water. Experiments included 36 treatments, which consisted of different mixtures of sugar molasses and a lactic acid bacteria inoculum (B-Lac) in proportions of 0, 1, 3, 5, 7 and 10% (v/v) and wastewater in a fixed proportion of 200 ml, under a completely randomized design (CRD) with factorial arrangement 6x6. The pH values on the third day were evaluated using an Analysis of Variance (ANOVA) followed by Tukey´s range test for mean differences (p < 0.05). The different treatments were analyzed in a first stage for 9 days, after which the best three were selected for a second evaluation: T16 (3% molasses and 5% B-Lac), T22 (5% molasses and 5% B-Lac) and T33 (10% molasses and 3% B-Lac); results show that the interaction effect between the two variables is significant. Finally, treatment T16 was selected as the most efficient, reaching a pH of 4.08 in a short time (3 days) that assured the complete removal of fecal coliform bacteria (9.65x105 MPN/100 ml) in the wastewater.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

APHA (American Public Health Association), AWWA (American Water Works Association) & WEF (Water Environment Federation). 2017. 9221 Multiple-Tube Fermentation Technique for Members of the Coliform Group. Standard Methods for the Examination of Water and Wastewater. DOI: 10.2105/SMWW.2882.192.

Carrasco M.S., Scarinci H.E. & Simonetta A.C. 2002. Antibacterial activity of lactic acid bacteria isolated from Argentina dairy products. Australian Journal of Dairy Technology, 57(1): 15-19. https://diaa.asn.au/publications/australian-journal-of-dairy-technology/search-full-issues?page=14.

Chulluncuy N. 2011. Tratamiento de agua para consumo humano. Ingeniería Industrial, 29: 153-170. DOI: http://dx.doi.org/10.26439/ing.ind2011.n029.232.

Corpas E. & Herrera O. 2012. Reducción de coliformes y Escherichia coli en un sistema residual lácteo mediante microorganismos benéficos. Biotecnología en el Sector Agropecuario y Agroindustrial, 10(1): 67-76. https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/793.

Delgadillo O., Camacho A., Pérez L. & Andrade M. 2010. Depuración de aguas residuales por medio de humedales artificiales. Centro Andino para la Gestión y Uso del Agua (Centro AGUA) / Universidad Mayor de San Simón. Editor Antequera N. Cochabamba / Bolivia. https://core.ac.uk/download/pdf/48017573.pdf.

Garcés A., Berrio L., Ruiz S., Serna J. & Builes A. 2004. Ensilaje como fuente de alimentación para el ganado. Revista Lasallista de Investigación, 1(1): 66-71. http://hdl.handle.net/10567/179.

García L. & Iannacone J. 2014. Pseudomonas aeruginosa un indicador complementario de la calidad de agua potable: Análisis bibliográfico a nivel de Sudamérica. The Biologist (Lima), 12 (1): 133-152. https://sisbib.unmsm.edu.pe/BVRevistas/biologist/v12_n1/pdf/rev2v12n1.pdf.

Guadarrama E. & Galván A. 2015. Impacto del uso de agua residual en la agricultura. Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias, 4(7): 22-44. http://www.ciba.org.mx/index.php/CIBA/article/view/29.

Higa T. & Chinen N. 1998. EM Treatments of Odor, Waste Water, and Environment Problems. College of Agriculture, University of the Ryukyus, Okinawa, Japan.

Hofvendahl K. & Hahn–Hägerdal B. 2000. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme and Microbial Technology, 26(2-4): 87-107. DOI: https://doi.org/10.1016/s0141 0229(99)00155-6.

Kelly W., Davey G. & Ward L. 1998. Characterization of lactococci isolated from minimally processed fresh fruit and vegetables. International Journal of Food Microbiology, 45(2): 85-92. DOI: 10.1016/s0168 1605(98)00135-4.

Lahera V. 2010. Infraestructura sustentable: las plantas de tratamiento de aguas residuales. Quivera, 12(2): 58-69. https://quivera.uaemex.mx/article/view/10189.

León Á., Montoya O., Motato K., Granda D., Caro C., Restrepo J., Echeverri S., Valencia J. & Quinchía L. 2006. Bacterias ácido lácticas (bal) silvestres colombianas presentan propiedades adecuadas para la fabricación de masa ácida. Vitae, Revista de la Facultad de Química Farmacéutica, 13(2): 26-35. http://www.scielo.org.co/pdf/vitae/v13n2/v13n2a04.pdf.

Londoño A., Giraldo G. & Gutiérrez Á. 2010. Métodos analíticos para la evaluación de la calidad fisicoquímica del agua. Universidad Nacional de Colombia sede Manizales. Editorial Blanecolor Ltda. Caldas, Colombia.

Martín del Campo C., Gómez H. & Alaníz R. 2008. Bacterias ácido lácticas con capacidad antagónica y actividad bacteriocinogénica aisladas de quesos frescos. e-Gnosis, 6: Art 5. http://www.e-gnosis.udg.mx/index.php/e-gnosis/article/view/83.

McFeters G. & Stuart D. 1972. Survival of coliform bacteria in natural waters: field and laboratory studies with membrane-filter chambers. Applied Microbiology, 24(5): 805-811. https://aem.asm.org/content/24/5/805.

Mindreau E., Juscamaita J. & Williams M. 2016. Estabilización de heces humanas provenientes de baños secos por un proceso de fermentación ácido láctica. Ecología aplicada, 15(2): 143-150. DOI: dx.doi.org/10.21704/rea.v15i2.754.

Okuda A. & Higa T. 1999. Purification of Waste Water with Effective Microorganisms and its Utilization in Agriculture. Proceedings of the 5th International Conference on Kyusei Nature Farming. Senanayake YDA and Sangakkara UR. (Ed) APNAN, 23-26 October 1977, Bangkok, Thailand. 246-253. http://www.infrc.or.jp/knf/5th_Conf_S_8_2.html.

Orta L. 2002. Contaminación de las aguas por plaguicidas químicos. Fitosanidad, 6(3): 55-62. http://www.fitosanidad.cu/index.php/fitosanidad/article/view/840.

Ortiz A., Reuto J., Fajardo E., Sarmiento S., Aguirre A., Arbeláez G., Gómez D. & Quevedo-Hidalgo B. 2008. Evaluación de la capacidad probiótica “in vitro” de una cepa nativa de Saccharomyces cerevisiae. Universitas scientiarum, 13(2): 138-148. https://revistas.javeriana.edu.co/index.php/scientarium/article/view/1418.

Ossa J., Vanegas M. & Badillo Á. 2010. Evaluación de la melaza de caña como sustrato para el crecimiento de Lactobacillus plantarum. Revista U.D.C.A Actualidad & Divulgación Científica, 13(1): 97-104. DOI: doi.org/10.31910/rudca.v13.n1.2010.713.

Peralta L., Juscamaita J. & Meza V. 2016. Obtención y caracterización de abono orgánico líquido a través del tratamiento de excretas del ganado vacuno de un establo lechero usando un consorcio microbiano ácido láctico. Ecología aplicada, 15(1): 1-10. DOI: dx.doi.org/10.21704/rea.v15i1.577.

Quiñones H., Trejo W. & Juscamaita J. 2016. Evaluación de la calidad de un abono líquido producido vía fermentación homoláctica de heces de alpaca. Ecología aplicada, 15(2): 133-142. DOI: dx.doi.org/10.21704/rea.v15i2.753.

Romero T. & Vargas D. 2017. Uso de microorganismos eficientes para tratar aguas contaminadas. Ingeniería hidráulica y ambiental, 38(3): 88-100. http://riha.cujae.edu.cu/index.php/riha/article/view/412.

Salfinger Y. & Tortorello M.L. (Eds). 2015. Compendium of Methods for the Microbiological Examination of Foods. 5th Ed. Chapter 8 and 21. APHA (American Public Health Association). DOI: https://doi.org/10.2105/MBEF.0222.

Serna-Cock L. & Rodríguez-de Stouvenel A. 2005. Producción biotecnológica de ácido láctico: estado del arte. Ciencia y Tecnología Alimentaria, 5(1): 54-65. DOI: https://doi.org/10.1080/11358120509487672.

Silva J., Torres P. & Madera C. 2008. Reuso de aguas residuales domésticas en agricultura. Una revisión. Agronomía Colombiana, 26(2): 347-359. https://revistas.unal.edu.co/index.php/agrocol/article/view/13521.

Tannock G. 2004. A Special Fondness for Lactobacilli. Applied and environmental microbiology, 70(6): 3189-3194. DOI: 10.1128/AEM.70.6.3189-3194.2004.

Veliz E., Llanes J., Asela L. & Bataller M. 2009. Reúso de aguas residuales domésticas para riego agrícola. Valoración crítica. Revista CENIC Ciencias Biológicas, 40(1): 35-44. https://www.redalyc.org/pdf/1812/181221574007.pdf.

Winward G., Avery L., Frazer-Williams R., Pidou M., Jeffrey P., Stephenson T. & Jefferson B. 2008. A study of the microbial quality of grey water and an evaluation of treatment technologies for reuse. Ecological Engineering, 32(2): 187-197. DOI: doi.org/10.1016/j.ecoleng.2007.11.001.

Wu S., Carvalho Pedro N., Müller Jochen A., Remony V. & Donga R. 2016. Sanitation in constructed wetlands: A review on the removal of human pathogens and fecal indicators. Science of the Total Environment, 541: 8-22. DOI: doi.org/10.1016/j.scitotenv.2015.09.047.

Descargas

Publicado

2021-06-09

Número

Sección

Artículos originales