¿EL IBUPROFENO Y FENOBARBITAL INFLUYEN EN LA TOLERANCIA DEL VECTOR DEL DENGUE AL LARVICIDA TEMEFOS?

Autores/as

  • Richar J. Morales-Rodríguez Filiación actual: Universidad Nacional Agraria La Molina \ Facultad de Ciencias \ Departamento de Biología. Av. La Molina s/n, La Molina / Lima / Perú. Filiación cuando se desarrolló el trabajo: Universidad Nacional de Trujillo \ Facultad de Ciencias Biológicas \ E.A.P. Microbiología y Parasitología. Av. Juan Pablo II s/n, Trujillo / La Libertad / Perú https://orcid.org/0000-0002-7216-0658
  • Judith Roldán-Rodríguez Filiación actual: Universidad Nacional de Trujillo \ Facultad de Ciencias Biológicas \ Departamento de Microbiología y Parasitología. Av. Juan Pablo II s/n, Trujillo / La Libertad / Perú. https://orcid.org/0000-0002-1283-6951
  • Karina Salvador-Herrera Filiación actual: Centro De Salud Villa Primavera Sullana / Subregión de Salud Luciano Castillo Colonna. Villa Primavera s/n, Sullana / Piura / Perú. https://orcid.org/0000-0002-5922-8275

DOI:

https://doi.org/10.21704/rea.v21i1.1874

Palabras clave:

detoxificación, Aedes aegypti, esterasas, temefos, tolerancia, insecticida, ibuprofeno, fenobarbital

Resumen

 La liberación de productos farmacéuticos se ha incrementado en ecosistemas terrestres y acuáticos poniendo en riesgo a la biota, pudiendo generar múltiples impactos en los organismos, desde modificar la expresión enzimática hasta el impacto intergeneracional en los organismos expuestos. Este estudio evaluó la influencia del fenobarbital e ibuprofeno sobre tolerancia al insecticida temefos en dos poblaciones de Aedes aegypti, La Esperanza (LE) y Rockefeller (Rock). Las larvas I fueron expuestas a 17.7 μg/ml de ibuprofeno y 200 μg/ml de fenobarbital hasta alcanzar el estadio III; posteriormente, se determinó la mortalidad larvaria al temefos (0.005, 0.025 y 0.050 μg/ml) y la actividad enzimática de las esterasas. Se encontró que el fenobarbital favorece una mayor tolerancia a 0.025 μg/ml de temefos, a las 24 horas de exposición, en la población LE (44.00 ± 6.93% de mortalidad) a diferencia de la Rock (97.33 ± 2.67% de mortalidad); además, disminuye la actividad enzimática de las alfa esterasas en los especímenes Rock y LE (0.3892 ± 0.0756 y 0.1722 ± 0.0194, densidad óptica, respectivamente). Asimismo, el ibuprofeno reporta una menor DL90 (0.024 μg/ml temefos) que el testigo (DL90 = 0.039 μg/ml de temefos) a las 2 horas de exposición. Se concluye que el fenobarbital aumenta la tolerancia de larvas de Aedes aegypti al temefos, y el ibuprofeno estimula la actividad de las alfa y beta-esterasas.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Adeleye A.S., Xue J., Zhao Y., Taylor A.A., Zenobio J. E., Sun Y., Han Z., Salawu O.A. & Zhu Y. 2021. Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. Journal of Hazardous Materials, 424-B: 127284. https://doi.org/10.1016/j.jhazmat.2021.127284.

Austin B. 1998. The effects of pollution on fish health. Journal of applied microbiology, 85(S1): 234S-242S. https://doi.org/10.1111/j.1365-2672.1998.tb05303.x.

Brattsten, L.B. 1990. Resistente mechanisms to carbamate and organophosphate insecticide (Chapter 3). In: . Green M.B., LeBaron H.M. & Moberg W.K. (eds.) Managing resistance to agrochemicals. 42-60. ACS Symposium Series Vol. 421. American Chemical Society. Washintong, D.C. DOI: 10.1021/bk-1990-0421.ch003.

Buser H.-R., Poiger T. & Müller M.D. 1999. Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environmental Science & Technology, 33(15): 2529-2535. https://doi.org/10.1021/es981014w.

Costa-da-Silva A.L., Ioshino R.S., Araújo H.R.C.d., Kojin B.B., Zanotto P.M.d.A., Oliveira D.B.L., Melo S.R., Durigon E.L. & Capurro M.L. 2017. Laboratory strains of Aedes aegypti are competent to Brazilian Zika virus. PloS one, 12(2): e0171951. https://doi.org/10.1371/journal.pone.0171951.

Geissen V., Mol H., Klumpp E., Umlauf G., Nadal M., Van der Ploeg M., Van de Zee S.E. & Ritsema C.J. 2015. Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research, 3(1): 57-65. https://doi.org/10.1016/j.iswcr.2015.03.002.

Hemingway J., Hawkes N.J., McCarroll L. & Ranson H. 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34(7): 653-665. https://doi.org/10.1016/j.ibmb.2004.03.018.

Hernando M.D., Mezcua M., Fernández-Alba A.R. & Barceló D. 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2): 334-342. https://doi.org/10.1016/j.talanta.2005.09.037.

Hu X., Guo Y., Wu S., Liu Z., Fu T., Shao E., Rebeca C.-L., Zhao G., Huang Z., Gelbič I., Guan X., Zou S., Xu L. & Zhang L. 2017. Effect of proteolytic and detoxification enzyme inhibitors on Bacillus thuringiensis var. israelensis tolerance in the mosquito Aedes aegypti. Biocontrol Science and Technology, 27(2): 169-179. https://doi.org/10.1080/09583157.2016.1253828.

Kasai S., Komagata O., Itokawa K., Shono T., Ng L.C., Kobayashi M. & Tomita T. 2014. Mechanisms of pyrethroid resistance in the dengue mosquito vector, Aedes aegypti: target site insensitivity, penetration, and metabolism. PLoS Neglected Tropical Diseases, 8(6): e2948. https://doi.org/10.1371/journal.pntd.0002948.

Kotze A. 1995. Induced insecticide tolerance in larvae of Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) following dietary phenobarbital treatment. Australian Journal of Entomology, 34(3): 205-209. https://doi.org/10.1111/j.1440-6055.1995.tb01319.x.

Kotze A.C., Ruffell A.P. & Ingham A.B. 2014. Phenobarbital induction and chemical synergism demonstrate the role of UDP-glucuronosyltransferases in detoxification of naphthalophos by Haemonchus contortus larvae. Antimicrobial Agents and Chemotherapy, 58(12): 7475-7483. https://doi.org/10.1128/AAC.03333-14.

Marchlewicz A., Guzik U. & Wojcieszyńska D. 2015. Over-the-counter monocyclic non-steroidal anti-inflammatory drugs in environment—sources, risks, biodegradation. Water, Air, & Soil Pollution, 226(10): Article number 355. https://doi.org/10.1007/s11270-015-2622-0.

Marchlewicz A., Guzik U., Hupert-Kocurek K., Nowak A., Wilczyńska S. & Wojcieszyńska D. 2017. Toxicity and biodegradation of ibuprofen by Bacillus thuringiensis B1 (2015b). Environmental Science and Pollution Research, 24(8): 7572-7584. https://doi.org/10.1007/s11356-017-8372-3.

Muñiz-González A.-B. 2021. Ibuprofen as an emerging pollutant on non-target aquatic invertebrates: Effects on Chironomus riparius. Environmental Toxicology and Pharmacology, 81: 103537. https://doi.org/10.1016/j.etap.2020.103537.

Murdoch R.W. & Hay A.G. 2015. The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation, 26(2): 105-113. https://doi.org/10.1007/s10532-015-9719-4.

Parolini M. 2020. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Science of The Total Environment, 740: 140043. https://doi.org/10.1016/j.scitotenv.2020.140043.

Pereira A., Silva L., Laranjeiro C., Lino C. & Pena A. 2020. Selected pharmaceuticals in different aquatic compartments: Part II—Toxicity and environmental risk assessment. Molecules, 25(8): 1796. https://doi.org/10.3390/molecules25081796.

Poupardin R., Reynaud S., Strode C., Ranson H., Vontas J. & David J.-P. 2008. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochemistry and Molecular Biology, 38(5): 540-551. https://doi.org/10.1016/j.ibmb.2008.01.004.

Riaz M.A., Poupardin R., Reynaud S., Strode C., Ranson H. & David J.-P. 2009. Impact of glyphosate and benzo (a) pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquatic Toxicology, 93(1): 61-69. https://doi.org/10.1016/j.aquatox.2009.03.005.

Rodríguez M.M., Bisset J.A., Díaz C. & Soca L.A. 2003. Resistencia cruzada a piretroides en Aedes aegypti de Cuba inducido por la selección con el insecticida organofosforado malation. Revista Cubana de Medicina Tropical, 55(2): 105-111. http://scielo.sld.cu/pdf/mtr/v55n2/mtr08203.pdf.

Rodríguez M.M., Bisset J.A., Molina D., Díaz C. & Soca L.A. 2001. Adaptación de los métodos en placas de microtitulación para la cuantificación de la actividad de esterasas y glutatión-s-transferasa en Aedes aegypti. Revista Cubana de Medicina Tropical, 53(1):32-36. http://scielo.sld.cu/pdf/mtr/v53n1/mtr06101.pdf.

Sousa-Polezzi R.d.C. & Bicudo H.E.M.d.C. 2004a. Aedes aegypti (Diptera, Culicidae): a new system to study impaired biological effects of phenobarbital. Arq Ciênc Saúde, 11(2): 128-132. https://repositorio-racs.famerp.br/racs_ol/Vol-11-2/ac14%20-%20id%2054.pdf.

Sousa-Polezzi R.d.C. & Bicudo H.E.M.d.C. 2004b. Effect of phenobarbital on inducing insecticide tolerance and esterase changes in Aedes aegypti (Diptera: Culicidae). Genetics and Molecular Biology, 27(2): 275-283. https://www.scielo.br/j/gmb/a/T3Qt5PmDG4kXskQznNmCFGv/?format=pdf&lang=en.

Suwanchaichinda C. & Brattsten L. 2001. Effects of exposure to pesticides on carbaryl toxicity and cytochrome P450 activities in Aedes albopictus larvae (Diptera: Culicidae). Pesticide Biochemistry and Physiology, 70(2): 63-73. https://doi.org/10.1006/pest.2001.2544.

Suwanchaichinda C. & Brattsten L.B. 2002. Induction of microsomal cytochrome P450s by tire‐leachate compounds, habitat components of Aedes albopictus mosquito larvae. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America, 49(2): 71-79. https://doi.org/10.1002/arch.10009.

Villalva-Rojas O., Grande-Ortíz M., Ortiz J., Isasi J., Yantas D. & Fiestas V. 2007. Estudio de bioequivalencia del ibuprofeno genérico 400 mg tabletas. Revista Peruana de Medicina Experimental y Salud Publica, 24(4): 356-362. https://rpmesp.ins.gob.pe/index.php/rpmesp/article/view/1134.

WHO. 2005. Guidelines for laboratory and field testing of mosquito larvicides. WHO (World Health Organization). WHO/CDS/WHOPES/GCDPP/2005.13. https://apps.who.int/iris/bitstream/handle/10665/69101/WHO_CDS?sequence=1.

Willoughby L., Chung H., Lumb C., Robin C., Batterham P. & Daborn P.J. 2006. A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochemistry and Molecular Biology, 36(12): 934-942. https://doi.org/10.1016/j.ibmb.2006.09.004.

Xie H., Chen J., Huang Y., Zhang R., Chen C.-E., Li X. & Kadokami K. 2020. Screening of 484 trace organic contaminants in coastal waters around the Liaodong Peninsula, China: Occurrence, distribution, and ecological risk. Environmental Pollution, 267: 115436. https://doi.org/10.1016/j.envpol.2020.115436.

Descargas

Publicado

03-07-2022

Número

Sección

Artículos originales

Cómo citar

Morales-Rodríguez, R. J., Roldán-Rodríguez , J. ., & Salvador-Herrera, K. . (2022). ¿EL IBUPROFENO Y FENOBARBITAL INFLUYEN EN LA TOLERANCIA DEL VECTOR DEL DENGUE AL LARVICIDA TEMEFOS?. Ecología Aplicada, 21(1), 49-55. https://doi.org/10.21704/rea.v21i1.1874