Disminución de la resistencia mecánica de madera laminada ocasionada por su exposición al fuego
DOI:
https://doi.org/10.21704/rfp.v34i1.1286Palabras clave:
ingeniería de la madera, madera laminada, densidad de la madera, módulo de elasticidad, módulo de ruptura, pérdida de masa.Resumen
La madera laminada es la tendencia en ingeniería de la madera para sustituir a la madera sólida. El conocimiento de su reacción al fuego tiene aplicación en el diseño arquitectural y en el cálculo para edificar con madera. El objetivo de la investigación fue determinar la disminución de la resistencia mecánica de la madera laminada ocasionada por su exposición al fuego. Se fabricaron piezas de madera laminada de Pinus pseudostrobus y se desarrolló un protocolo de laboratorio específico para medir la disminución de la masa por el fuego, así como para estimar la variación de los módulos de elasticidad estático y de ruptura determinados en pruebas de flexión estática. Se calcularon la densidad y el contenido de humedad de la madera. Para fines del diseño experimental, el factor de variación fue el tiempo de exposición al fuego. Las variables estudiadas fueron: la pérdida de masa, el módulo de elasticidad y el módulo de ruptura. Los parámetros determinados correlacionan estadísticamente de manera importante con el tiempo durante el periodo medido. Los resultados mostraron que la pérdida de masa aumentó con la exposición al fuego. En contraste, los módulos de elasticidad y de ruptura de la madera disminuyeron a medida que el tiempo aumentó.Descargas
Referencias
Almeida, G; Santos, DVB; Perré, P. 2014. Mild pyrolysis of fast-growing wood species (Caribbean pine and Rose gum): Dimensional changes predicted by the global mass loss. Biomass and Bioenergy 70:407-415.
Bartlett, AI; Hadden, RM; Hidalgo, JP; Santamaria, S; Wiesner, F; Bisby, LA; Deeny, S; Lane, B. 2017. Auto-extinction of engineered timber:Application to compartment fires with exposed timber surfaces. Fire Safety Journal 91:407-413.
Bednarek, Z; Griškevičius, M; Šaučiuvėnas, G. 2009. Tensile, Compressive and Flexural Strength Reduction of Timber in Fire. Statybinės Konstrukcijos ir Technologijos 1(3):148-156.
Brandon, D; Schmid, J; Just, A. 2016. Eurocode 5 design in comparison with fire resistance tests of unprotected timber beams. Conference on performance based design and fire safety design methods SFPE (11, 2016, Warsaw, Poland). Warsaw, Poland.
Čekovská, H; Gaff, M; Osvaldová, LM; Kačik, F; Kaplan, L; Kubs, J. 2017. Tectona grandis Linn. and its Fire Characteristics Affected by the Thermal Modification of Wood. Bioresources 12(2):2805-2817.
Chan‐Hom, T; Yamsaengsung, W; Prapagdee, B; Markpin, T; Sombatsompop, N. 2017. Flame retardancy, antifungal efficacies, and physical–mechanical properties for wood/polymer composites containing zinc borate. Fire and Materials 41(6):675-687.
Cueff, G; Mindeguia, JC; Dréan, V; Breysse, D; Auguin, G. 2018. Experimental and numerical study of the thermomechanical behaviour of wood-based panels exposed to fire. Construction and Building Materials 160:668-678.
Elvira-León, JC; Chimenos, JM; Isábal, C; Monton, J; Formosa, J; Haurie, L. 2016. Epsomite as flame retardant treatment for wood:Preliminary study. Construction and Building Materials 126:936-942.
Emberley, R; Do, T; Yim, J; Torero, JL. 2017. Critical heat flux and mass loss rate for extinction of flaming combustion of timber. Fire Safety Journal 91:252-258.
Forest Products Laboratory. 2010. Wood handbook. Wood as an engineering material. General Technical Report FPL-GTR-190. U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. Madison, USA. 508 p.
Friquin, KL. 2011. Material properties and external factors influencing the charring rate of solid wood and glue‐laminated timber. Fire and Materials 35(5):303-327.
Gernay, T; Franssen, JM. 2015. A performance indicator for structures under natural fire. Engineering Structures 100:94-103.
Hopkin, DJ; El-Rimawi, J; Silberschmidt, V; Lennon, T. 2011. An effective thermal property framework for softwood in parametric design fires: Comparison of the Eurocode 5 parametric charring approach and advanced calculation models. Construction and Building Materials 25(5):2584-2595.
ISO (International Organization for Standardization). 2014a. Wood. Determination of moisture content for physical and mechanical tests.
ISO 13061-1:2014. Geneva, Switzerland. 11 p.
ISO (International Organization for Standardization). 2014b. Wood. Determination of density for physical and mechanical tests. ISO 130612:2014. Geneva, Switzerland. 11 p.
Kinjo, H; Horio, T; Hirashima, T; Katakura, Y; Saito, K; Yusa, S. 2016. Deflection behaviour and load bearing capacity of larch glued laminated
timber beams exposed to standard fire heating during the cooling phase: Study on fire performance of structural glued laminated timber beams. Part 2. Journal of Structural and Construction Engineering 81(726):1355-1361.
König, J. 2009. The reduced cross-section method for light timber frame construction with solid timber members. Borås, Sweden, SP Technical Research Institute of Sweden. 22 p.
Laguarda Mallo, MF; Espinoza, O. 2015. Awareness, perceptions and willingness to adopt Cross-Laminated Timber by the architecture community in the United States. Journal of Cleaner Production 94:198-210.
Leško, R; Lopušniak, M. 2016. Determination of Fire Resistance of Ceiling Structure Variant Design on the Basis of Timber Using Numerical calculation methods. Applied Mechanics and Materials 820:379-384.
Li, Z; He, M; Lam, F; Li, M; Ma, R; Ma, Z. 2014. Finite element modeling and parametric analysis of timber–steel hybrid structures. The Structural Design of Tall and Special Buildings 23(14):1045-1063.
Lineham, SA; Thomson, D; Bartlett, AI; Bisby, LA; Hadden, RM. 2016. Structural response of fire-exposed cross-laminated timber beams under sustained loads. Fire Safety Journal 85:23-34.
Mačiulaitis, R; Jefimovas, A; Zdanevičius, P. 2012. Research of natural wood combustion and charring processes. Journal of Civil Engineering and Management 18(5):631-641.
Mačiulaitis, R; Praniauskas, V; Yakovlev, G. 2013. Research into the fire properties of wood products most frequently used in construction. Journal of Civil Engineering and Management 19(4):573-582.
Missanjo, E; Matsumura, J. 2016. Wood density and mechanical properties of Pinus kesiya Royle ex Gordon in Malawi. Forests 7(7):135-
Nadir, Y; Nagarajan, P. 2014. The behavior of horizontally glued laminated beams using rubber Wood. Construction and Building Materials 55:398-405.
Ni, Z; Qiu, P. 2012. Experimental study on fire resistance performance of glulam beams. Applied Mechanics and Materials 193-194:539-543.
Östman, B; Brandon, D; Frantzich, H. 2017. Fire safety engineering in timber buildings. Fire Safety Journal 91:11-20.
Polocoșer, T; Kasal, B; Stöckel, F. 2017. Stateof-the-art: intermediate and high strain rate testing of solid wood. Wood Science and Technology 51(6):1479-1534.
Rocha, MA; Landesmann, A. 2016. Combustion properties of Brazilian natural wood species. Fire and Materials 40(2):219-228.
Sáenz, Reyes, JT; Muñoz Flores, HJ; Rueda Sánchez, A. 2011. Especies Promisorias de Clima Templado para Plantaciones Forestales Comerciales en Michoacán. Uruapan, México, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. 213 p.
Schmid, J; Just, A; Klippel, M; Fragiacomo, M. 2015. The Reduced Cross-Section Method for Evaluation of the Fire Resistance of Timber Members: Discussion and Determination of the Zero-Strength Layer. Fire Technology 51(6):1285-1309.
Schmid, J; Klippel, M; Just, A; Frangi, A. 2014. Review and analysis of fire resistance tests of timber members in bending, tension and compression with respect to the Reduced Cross-Section Method. Fire Safety Journal 68:81-99.
Sotomayor Castellanos, JR. 2015. Banco FITECMA de características ísico-mecánicas de maderas mexicanas. Morelia, México, Universidad Michoacana de San Nicolás de Hidalgo. 65 p.
Sotomayor Castellanos, JR. 2016. Módulo dinámico de la madera de Pinus pseudostrobus. Evaluación por vibraciones transversales. Investigación e Ingeniería de la Madera 12(2):34-48.
Sotomayor Castellanos, JR. 2017. Determinación por ondas de esfuerzo del módulo dinámico en madera laminada de Pinus pseudostrobus. Revista Ciencia Nicolaita 72(3):118-135.
Sotomayor Castellanos, JR; Carmona Delgado, I; Cervantes Móreles, I; Garduño Suárez, D; Jiménez Guzmán, DZ; Lemus Durán, R; Maldonado Correa, D; Pérez Tello, A; Vaca Hernández, MA; Valdez Velázquez, O. 2015. Madera laminada de Pinus pseudostrobus. Caracterización dinámica con métodos no destructivos. Investigación e Ingeniería de la Madera 11(3):4-34.
Sotomayor Castellanos, JR; Gallegos León, G. 2018. Reacción al fuego de madera sólida y laminada de Enterolobium cyclocarpum, Tabebuia rosea y Juniperus pyriformis. Estudio comparativo. Investigación e Ingeniería de la Madera 14(1):39-78.
Wiesner, F; Bisby, L. 2018. The structural capacity of laminated timber compression elements in fire: A meta-analysis. Fire Safety Journal. DOI: https://doi.org/10.1016/j.firesaf. 2018.04.009
Xu, Q; Chen, L; Harries, KA; Zhang, F; Liu, Q; Feng, J. 2015. Combustion and charring properties of five common constructional wood species from cone calorimeter tests. Construction and Building Materials 96:416-427.
Yuksel, M; Baysal, E; Toker, H. 2014. Combustion characteristics of oriental beech wood impregnated with commonly used borates. Wood Research 59(1):39-50.
Zhao, Z; Ma, Q; Mu, J; Yi, S; He, Z. 2017. Numerical analysis of Eucalyptus grandis × E. urophylla heat-treatment: A dynamically detecting method of mass loss during the process. Results in Physics 7: 5-15.