RELACIÓN ENTRE EL MATERIAL PARTICULADO (PM10), LOS PARÁMETROS METEOROLÓGICOS Y LA CONCENTRACIÓN DE ESPORAS FÚNGICAS EN LA ATMÓSFERA DE LA PLAZA SAN MARTÍN DE LIMA

Autores/as

DOI:

https://doi.org/10.21704/rea.v22i1.1927

Palabras clave:

material particulado, PM10, bioaerosol, esporas, hongos, variables meteorológicas

Resumen

Se estudió la relación que existe entre la concentración de material particulado con diámetro aerodinámico ≤ 10 µm (PM10), las variables meteorológicas (temperatura del aire, humedad relativa, índice UV y velocidad del viento) y la concentración de esporas fúngicas totales en el aire exterior de la Plaza San Martín de Lima. El muestreo de esporas fúngicas se realizó utilizando un equipo de impacto volumétrico tipo Andersen de una sola etapa; los valores de PM10 fueron proporcionados por la Estación Móvil de La Colmena (PROTRANSPORTE – Municipalidad de Lima). Los resultados muestran que las concentraciones de PM10 fueron las más altas en los meses de marzo y abril, que coinciden con las mayores concentraciones de esporas totales, y disminuyeron continuamente hasta un mínimo en los meses de junio y julio. La concentración de PM10 mostró una fuerte correlación positiva con la concentración de esporas totales. Respecto a la influencia de las variables meteorológicas sobre la concentración de PM10, se encontró que existe una correlación positiva no significativa con la velocidad del viento (r = 0.727). La temperatura del aire y el índice UV presentaron una correlación positiva con un nivel de significancia p < 0.001. Con relación a la humedad relativa (HR), PM10 presentó una correlación negativa con un nivel de significancia p < 0.05. Se requieren más estudios para evaluar las concentraciones de PM10 en relación con las concentraciones de esporas fúngicas en la atmósfera de la Plaza San Martín.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Adhikari A., Reponen T., Grinshpun S., Martuzevicius D. & LeMasters G. 2006. Correlation of ambient inhalable bioaerosols with particulate matter and ozone: A two-year study. Environmental Pollution, 140(1): 16–28. https://doi.org/10.1016/j.envpol.2005.07.004.

Andersen A. 1958. New sampler for the collection, sizing and enumeration of viable airborne particles. Journal of Bacteriology, 76(5): 471–484. https://doi.org/10.1128/jb.76.5.471-484.1958.

Bardtke D., Baader W., Tietjen C. & Strauch D. 1977. Abfälle aus der Tierhaltung-Anfall, Umwelt- belastung, Behandlung, Verwertung. Ulmer Verlag, Stuttgart. https://www.openagrar.de/receive/timport_mods_00008 616.

Barnett H. & Hunter B. 1998. Illustrated genera of Imperfect Fungi. 4th Ed. APS Press, Saint Paul, Minnesota.

Boreson J., Dillner A. M. & Peccia J. 2004. Correlating bioaerosol load with PM2.5 and PM10cf concentrations: A comparison between natural desert and urban-fringe aerosols. Atmospheric Environment, 38(35): 6029–6041. https://doi.org/10.1016/j.atmosenv.2004.06.040.

Cao C., Jiang W., Wang B., Fang J., Lang J., Tian G., Jiang J. & Zhu T.F. 2014. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event. Environmental Science & Technology, 48(3): 1499–1507. https://doi.org/10.1021/es4048472.

Ediagbonya T., Ukpebor E. & Okieimen F. 2013. The Influence of Meteorological Parameters on Respirable and Inhalabe Particle During Wet Season. Journal of Applied Sciences and Environmental Management, 17(4): 441–448. https://www.bioline.org.br/abstract?id=ja13050&lang=e n.

Elminir H.K. 2005. Dependence of urban air pollutants on meteorology. Science of the Total Environment, 350(1– 3): 225–237. https://doi.org/10.1016/j.scitotenv.2005.01.043.

Ghosh B., Lal H. & Srivastava A. 2015. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environment International, 85: 254–272. https://doi.org/10.1016/j.envint.2015.09.018.

Glikson M., Rutherford S., Simpson R. W., Mitchell C. A. & Yago A. 1995. Microscopic and submicron components of atmospheric particulate matter during high asthma periods in Brisbane, Queensland, Australia. Atmospheric Environment, 29(4): 549–562. https://doi.org/10.1016/1352-2310(94)00278-S.

González-Duque C.M., Cortés-Araujo J. & Aristizábal-Zuluaga B.H. 2015. Influence of meteorology and source variation on airborne PM10 levels in a high relief tropical Andean city. Revista Facultad de Ingenieria, (74): 200– 212. https://revistas.udea.edu.co/index.php/ingenieria/article/ view/18616.

Gulshan J.E., Hossain S.A., Hossain M.E., Islam M.M., Emon S.Z., Manzum A.A., Jashim Z.B. & Huda M.N. 2021. Seasonal variations of microbes in particulate matter obtained from Dhaka City in Bangladesh. Environmental Pollutants and Bioavailability, 33(1): 122–134. https://doi.org/10.1080/26395940.2021.1940302.

Gupta A., Moniruzzaman M., Hande A., Rousta I., Olafsson H. & Mondal K. K. 2020. Estimation of particulate matter (PM2.5, PM10) concentration and its variation over urban sites in Bangladesh. SN Applied Sciences, 2(12): 1993. https://doi.org/10.1007/s42452-020-03829-1.

Haas D., Galler H., Luxner J., Zarfel G., Buzina W., Friedl H., Marth E., Habib J. & Reinthaler F.F. 2013. The concentrations of culturable microorganisms in relation to particulate matter in urban air. Atmospheric Environment, 65: 215–222. https://doi.org/10.1016/j.atmosenv.2012.10.031.

Hosler C.R. 1961. Low-level inversion frequency in the contiguous United States. Monthly Weather Review, 89(9): 319–339. https://doi.org/10.1175/1520- 0493(1961)0892.0.CO;2.

Ibald-Mulli A., Wichmann H.E., Kreyling W. & Peters A. 2002. Epidemiological evidence on health effects of ultrafine particles. Journal of Aerosol Medicine, 15(2): 189-201. https://doi.org/10.1089/089426802320282310.

Jayamurugan R., Kumaravel B., Palanivelraja S. & Chockalingam M. P. 2013. Influence of Temperature, Relative Humidity and Seasonal Variability on Ambient Air Quality in a Coastal Urban Area. International Journal of Atmospheric Sciences, 2013: Article ID 264046. https://doi.org/10.1155/2013/264046.

Kayes I., Shahriar S.A., Hasan K., Akhter M., Kabir M.M. & Salam M.A. 2019. The relationships between meteorological parameters and air pollutants in an urban environment. Global Journal of Environmental Science and Management, 5(3): 265–278. https://doi.org/10.22034/gjesm.2019.03.01.

Kirešová S. & Guzan M. 2022. Determining the Correlation between Particulate Matter PM10 and Meteorological Factors. Eng, 3(3): 343–363. https://doi.org/10.3390/eng3030025.

Kliengchuay W., Meeyai A.C., Worakhunpiset S. & Tantrakarnapa K. 2018. Relationships between meteorological parameters and particulate matter in Mae Hong Son province, Thailand. International Journal of Environmental Research and Public Health, 15(12): 2801. https://doi.org/10.3390/ijerph15122801.

Kliengchuay W., Srimanus R., Srimanus W., Niampradit S., Preecha N., Mingkhwan R., Worakhunpiset S., Limpanont Y., Moonsri K. & Tantrakarnapa K. 2021. Particulate matter (PM10) prediction based on multiple linear regression: a case study in Chiang Rai Province, Thailand. BMC Public Health, 21(1): Art. 2149. https://doi.org/10.1186/s12889-021-12217-2.

Köck M., Schlacher R., Pichler-Semmelrock F.P., Reinthaler F.F., Eibel U., Marth E. & Friedl H. 1998. Airborne microorganisms in the metropolitan area of Graz, Austria. Central European Journal of Public Health, 6(1): 25-28.

Kumar P., Hama S., Nogueira T., Abbass R.A., Brand V.S., Andrade M. de F., Asfaw A., Aziz K.H., Cao S.J., El Gendy A., Islam S., Jeba F., Khare M., Mamuya S.H., Martinez J., Meng M.R., Morawska L., Muula A.S., Shiva Nagendra S.M., Ngowi A.V., Omer K., Olaya Y., Osano P. & Salam A. 2021. In-car particulate matter exposure across ten global cities. Science of The Total Environment, 750: 141395. https://doi.org/10.1016/j.scitotenv.2020.141395.

Neuberger M., Schimek M.G., Horak Jr. F., Moshammer H., Kundi M., Frischer Th., Gomiscek B., Puxbaum H., Hauk H. & AUPHEP-Team. 2004. Acute effects of particulate matter on respiratory diseases, symptoms and functions: epidemiological results of the Austrian Project on Health Effects of Particulate Matter (AUPHEP). Atmospheric Environment, 38(24): 3971-3981. https://doi.org/10.1016/j.atmosenv.2003.12.044.

Raisi L., Aleksandropoulou V., Lazaridis M. & Katsivela E. 2013. Size distribution of viable, cultivable, airborne microbes and their relationship to particulate matter concentrations and meteorological conditions in a Mediterranean site. Aerobiologia, 29(2): 233–248. https://doi.org/10.1007/s10453-012-9276-9.

Ramos R. & Meza V. 2017. Efectos de algunos factores meteorológicos sobre la concentración de esporas de hongos en la Plaza San Martín de Lima. Ecología Aplicada, 16(2): 143-149. http://dx.doi.org/10.21704/rea.v16i2.1018.

Sánchez-Ccoyllo O., Ordoñez-Aquino C., Aliaga-Martínez R. & Rojas-Quincho J. 2015. Evaluación de la Calidad del Aire en Lima Metropolitana, 2014. Lima: Servicio Nacional de Meteorología e Hidrología del Perú. https://www.senamhi.gob.pe/load/file/01403SENA 6.pdf.

Shapiro S.S. & Wilk M.B. 1965. An analysis of variance test for normality (Complete Samples). Biometrika, 52(3-4): 591–611. https://doi.org/10.2307/2333709.

Sirithian D. & Thanatrakolsri P. 2022. Relationships between Meteorological and Particulate Matter Concentrations (PM2.5 and PM10) during the Haze Period in Urban and Rural Areas, Northern Thailand. Air, Soil and Water Research, 15(1): 1–15. https://doi.org/10.1177/11786221221117264.

WHO. 2021. World Health Organization: Ambient (outdoor) air pollution. Accessed 13st May 2022 from: https://www.who.int/news-room/factsheets/detail/ambient-(outdoor)-air-quality-and-health.

Zhai Y., Li X., Wang T., Wang B., Li C. & Zeng G. 2018. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environment International, 113: 74–90. https://doi.org/10.1016/j.envint.2018.01.007.

Zhai Y., Li X., Wang T., Wang B., Li C. & Zeng G. 2018. A review on airborne microorganisms in particulate matters: Composition, characteristics and influence factors. Environment International, 113: 74–90. https://doi.org/10.1016/j.envint.2018.01.007.

Descargas

Publicado

24-07-2023

Número

Sección

Artículos originales

Cómo citar

Ramos, R. (2023). RELACIÓN ENTRE EL MATERIAL PARTICULADO (PM10), LOS PARÁMETROS METEOROLÓGICOS Y LA CONCENTRACIÓN DE ESPORAS FÚNGICAS EN LA ATMÓSFERA DE LA PLAZA SAN MARTÍN DE LIMA. Ecología Aplicada, 22(1), 35-41. https://doi.org/10.21704/rea.v22i1.1927

Artículos similares

1-10 de 75

También puede Iniciar una búsqueda de similitud avanzada para este artículo.