ABOVE-GROUND NET PRIMARY PRODUCTIVITY AND RAIN USE EFFICIENCY OF Megathyrsus maximus PASTORAL SYSTEMS: CASE STUDY OF EL 14 ESTABLISHMENT, DEPARTAMENTO MORENO, SANTIAGO DEL ESTERO, ARGENTINA

Authors

DOI:

https://doi.org/10.21704/rea.v21i1.1871

Keywords:

NDVI time series, seasonality, rainfall anomalies, thresholds

Abstract

The objectives of this work were: to delimit the growing seasons of the M. maximus pastoral systems in El 14 establishment, Departamento Moreno, Santiago del Estero, Argentina, in the 2000-2021 period using time series of NDVIMODIS and threshold 0.5 NDVIRATIO; to quantify their aboveground net primary productivity (ANPP) and their responses to seasonal rainfall anomalies; to quantify the rain use efficiency (RUE), relate it to seasonal rainfall and determine its trend in the period. Growing seasons (GS) start in November and end in May. Significant differences were found in the ANPP of GS with anomalies positive and negative of seasonal rainfall. ANPP recovers after GS with negative rainfall anomalies, evidencing their resilience capacity after extreme weather events. The RUE had a high negative trend in the period. Significant differences were found in the RUE and seasonal rainfall. Most of RUE are related to the normal range of rainfall for the study area. In turn, growing season with lowest RUE were related to rainfall ≥ 700 mm. Seasonal rainfall of 700 mm could be considered the threshold in the loss of water of pastoral systems. Anthropic activities like deforestation and livestock, added to shifts in seasonal storm in intensity/magnitude, number of rainy, timing and frequency, they would contribute to the loss of large amounts of water by surface runoff in the study area. The local information obtained enables the implementation of appropriate management strategies in order to mitigate extreme climatic adversities.

Downloads

Download data is not yet available.

References

Anriquez A., Albanesi A., Kunst C., Ledesma R., Lopez C., Rodriguez A. & Godoy J. 2005. Rolado de fachinales y calidad de suelos en el chaco occidental, Argentina. Ciencia del Suelo, 23(2): 145-157. https://www.suelos.org.ar/publicaciones/vol_23n2/anriquez_145-157.pdf.

Baldassini P. 2018. Provisión de Servicios Ecosistémicos en el Chaco Semiárido: efectos de los cambios en el uso del suelo y la variabilidad climática sobre la dinámica del carbono. Tesis presentada para optar al título de Doctor en Ciencias Agropecuarias. Universidad de Buenos Aires. https://ri.conicet.gov.ar/bitstream/handle/11336/81496/CONICET_Digital_Nro.898fb259-8039-4e6a-9298-e00fb83efd3e_A.pdf;jsessionid=88D233C8DC721BE344A7202A4ADD3067?sequence=2.

Baldassini P. & Paruelo J. 2020. Sistemas agrícolas y silvopastoriles en el Chaco Semiárido. Impactos sobre la productividad primaria. Ecología Austral, 30(1): 045-062. DOI: 10.25260/EA.20.30.1.0.961.

Bai Y., Wu J., Xing Q., Pan Q., Huang J., Yang D. & Han X. 2008. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 89(8): 2140–2153. https://doi.org/10.1890/07-0992.1

Boletta P.E. 2001. Utilización de información agrometereológica y satelital para la evaluación de la desertificación en el Chaco seco – Dpto Moreno, Santiago del Estero. Tesis para optar al grado de Magíster en Ciencias Agropecuarias. Universidad Nacional de Córdoba.

Boletta P.E., Ravelo C.A., Planchuelo A.M. & Grilli M. 2006. Assessing deforestation in the Argentine Chaco. Forest Ecology and Management, 228(1-3): 108–114. DOI: 10.1016/j.foreco.2006.02.045.

Celleri C., Zapperi G., González Trilla G. & Pratolongo P. 2018. Spatial and temporal patterns of rainfall variability and its relationship with land surface phenology in central east Argentina. Int. J. Climatol., 38(10): 3963-3975. DOI: 10.1002/joc.5547.

Dardel C., Kergoat L., Hiernaux P., Grippa M., Mougin E., Ciais P. & Nguyen C. 2014. Rain-Use-Efficiency: What it Tells us about the Conflicting Sahel Greening and Sahelian Paradox. Remote Sensing, 6: 3446-3474. DOI: 10.3390/rs6043446.

Di Rienzo J., Casanoves F., González L., Tablada M., Robledo C. & Balzarini M. 2019. Infostat. Software Estadístico. v2019. Grupo InfoStat / FCA / Universidad Nacional de Córdoba. Córdoba / Argentina. http://www.infostat.com.ar.

Embrapa. 2021. SATVeg - Sistema de Análise Temporal da Vegetação. Brasil. https://www.satveg.cnptia.embrapa.br/satveg/.

Fensholt R. 2004. Assessment of Primary Production in Semi-arid Environment from Satellite Data. Exploiting capabilities of new sensors. Thesis Ph. D. Geography. Department of Geosciences and Natural Resource Management / Faculty of Science. Scientific Level: Scientific ID: 2398113711. http://www.forskningsdatabasen.dk/en/catalog/2398113711.

Field C.B., Randerson J.T. & Malmström C.M. 1995. Global Net Primary Production: Combining Ecology and Remote Sensing. Remote Sensing Environment, 51(1): 74-88. https://doi.org/10.1016/0034-4257(94)00066-V.

Gamoun M. 2016. Rain use efficiency, primary production and rainfall relationships in desert rangelands of Tunisia. Land Degrad. Develop., 27(3): 738-747. DOI: 10.1002/ldr.2418.

Gao Y., Skutsch M., Paneque-Gálvez J. & Ghilardi A. 2020. Remote sensing of forest degradation: a review. Environ. Res. Lett., 15(10): 103001. https://doi.org/10.1088/1748-9326/abaad7.

Hoover D.L., Knapp A.K. & Smith M.D. 2014. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95:2646–2656. DOI: 10.1890/13-2186.1.

Hsu J.S., Powell J. & Adler P.B. 2012. Sensitivity of mean annual primary production to precipitation. Global Change Biology, 18(7): 2246-2255. DOI: 10.1111/j.1365-2486.2012.02687.x.

Hu Z., Yu G., Fan J., Zhong H., Wang S. & Li S. 2010. Precipitation-use efficiency along a 4500-km grassland transect. Global Ecology and Biogeography, 19(6): 842–851. DOI: 10.1111/j.1466-8238.2010.00564.x.

Huxman T.E., Smith M.D., Fay F.A., Knapp A.K., Shaw M.R., Loik M.E., Smith S.D., Tissue D.T., Zak J.K., Weltzin J.F., Pockman W.T., Sala O.E., Haddad B.M., Harte J., Koch G.W., Schwinning S., Small E.E. & Williams D.G. 2004. Convergence across biomes to a common rain-use efficiency. Nature, 429: 651-654. DOI: 10.1038/nature02561.

Kunst C., Ledesma R., Bravo S., Albanesi A. & Godiy J. 2012. Disrupting woody states in the Chaco region (Argentina): responses to combined disturbance treatments. Ecological Engineering, 42: 42-53. DOI: 1016/j.ecoleng.2012.01.025.

Kunst C., Ledesma R., Tomsic P. & Godoy J. 2013. Rolados e infiltración de agua en el suelo en la región chaqueña occidental. Revista de la Facultad de Agronomía UNLPam, 22(Serie supl. II. Congreso de Pastizales: Producción sustentable - Dimensión ecológica, social y cultural): 43-49. https://cerac.unlpam.edu.ar/index.php/semiarida/article/view/4506.

Lauenroth W. & Sala O.E. 1992. Long-Term forage production of North American shortgrass steppe. Ecological Applications, 2(4): 397-403. DOI: 10.2307/1941874.

Le Houérou H.N. 1984. Rain use efficiency: a unising concept in aridland ecology. Journal of Arid Environments, 7(3): 213-247.

Le Houérou H.N., Bingham R.L. & Skerbek W. 1988. Relationship between the variability of primary production and the variability of annual precipitation in world arid lands. Journal of Arid Environments, 15(1): 1-18. https://doi.org/10.1016/S0140-1963(18)31001-2.

Liu J., Ma X., Duan Z., Jiang J., Reichstein M. & Jung M. 2020. Impact of temporal rainfall variability on ecosystem productivity. WIREs Water, 7(6): e1481. https://doi.org/10.1002/wat2.1481.

Myneni R.B & Williams D.L. 1994. On the relationship between FAPAR and NDVI. Remote Sensing of Environment, 49(3): 200-211. https://doi.org/10.1016/0034-4257(94)90016-7.

Monteith J.L. 1972. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology, 9(3): 747-766. https://doi.org/10.2307/2401901. https://www.jstor.org/stable/2401901.

NASA. 2021. Prediction of Worldwide Energy Resource (POWER) Project. https://power.larc.nasa.gov/.

Noy-Meir I. 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4: 25-51. DOI: 10.1146/annurev.es.04.110173.000325.

Paruelo J.M., Lauenroth W.K., Burke I.C. & Sala O.E. 1999. Grassland precipitation-use efficiency varies across a resource gradient. Ecosystems, 2: 64-68. DOI: 10.1007/s100219900058.

https://www.economia.gob.ar/programanortegrande/docs/bovino_santiago.pdf

Rouse J.W., Haas R.H., Schell JA. & Deering D.W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. In: NASA Goddard Space Flight Center. Third ERTS-1 (Earth Resources Technology Satellite-1) Symposium,1(A): Paper-A20:309-317. Report number: NASA-SP-351-VOL-1-SECT-A. https://ntrs.nasa.gov/citations/19740022614.

Robinson T.M.P., La Pierre K.J., Vadeboncoeur M.A., Byrne K.M., Thomey M.L. & Colby S.E. 2013. Seasonal, not annual precipitation drives community productivity across ecosystems. Oikos, 122(5): 727-738. https://www.jstor.org/stable/41937721.

Sala O.E. & Lauenroth W.K. 1982. Small Rainfall Events: An Ecological Role in Semiarid Regions. Oecologia, 53(3): 301-304. http://www.jstor.org/stable/4216694.

Sala O.E., Parton W.J., Joyce L.A. & Lauenroth W.K. 1988. Primary production of the central grassland región of the United States. Ecology, 69(1): 40-45. https://doi.org/10.2307/1943158.

Sala O.E., Gherardi L.A., Reichmann L., Jobbagy E. & Peters D. 2012. Legacies of precipitation fluctuations on primary production: theory and data synthesis. Phil. Trans. R. Soc. B, 367(1606): 3135–3144. DOI: 10.1098/rstb.2011.0347.

SAyDS. 2005. Primer inventario nacional de bosques nativos. Proyecto Bosques Nativos y Áreas protegidas. SAyDS (Secretaría de Ambiente y Desarrollo Sustentable de la Nación). Argentina. https://www.argentina.gob.ar/sites/default/files/primer_inventario_nacional_-_informe_nacional_1.pdf.

Seaquist J.W., Olsson L. & Ardö J. 2003. A remote sensing-based primary production model for grassland biomes. Ecological Modelling, 169(1): 131-155. https://doi.org/10.1016/S0304-3800(03)00267-9.

Tiedemann J.L. 2018. Productividad primaria neta aérea de sistemas pastoriles de Panicum maximum derivada de NDVIMODIS y su respuesta ante sequías. En: Giménez A.M. & Bolzón de Muñiz G.I. Los Bosque y el futuro: Consolidando un vínculo permanente en educación forestal. 99-111. Ed. UNSE-UFPR. http://fcf.unse.edu.ar/index.php/portfolio/los-bosques-y-el-futuro-cooperacion-binacional-argentina-brasil/.

Vermeire L.T., Heitschmidt R.K. & Rinella M.J. 2009. Primary Productivity and Precipitation-Use Efficiency in Mixed-Grass Prairie: A Comparison of Northern and Southern US Sites. Rangeland Ecology and Management, 62(3): 230-239. DOI: 2111/07-140R2.1.

White M.A., Thomton P.E. & Running S.W. 1997. A continental phenology model for monitoring vegetation PEresponses to interannual climatic variability. Global Biogeochemical Cycles, 11(2): 217-234. https://doi.org/10.1029/97GB00330.

Zhang W., Brandt M., Tong X., Tian Q. & Fensholt R. 2018. Impacts of the seasonal distribution of rainfall on vegetation productivity across the Sahel. Biogeosciences, 15(1): 319-330. https://doi.org/10.5194/bg-15-319-2018.

Zhang T., Yu G., Chen Z., Hu Z., Jiao C., Yang M., Fu Z., Zhang W., Han L., Fan M., Zhang R., Sun Z., Gao Y. & Li W. 2020. Patterns and controls of vegetation productivity and precipitation-use efficiency across Eurasian grasslands. Science of The Total Environment, 741: 140204:1-9. DOI: 10.1016/j.scitotenv.2020.140204.

Downloads

Published

2022-07-03

Issue

Section

Artículos originales

How to Cite

Tiedemann, J. L. . (2022). ABOVE-GROUND NET PRIMARY PRODUCTIVITY AND RAIN USE EFFICIENCY OF Megathyrsus maximus PASTORAL SYSTEMS: CASE STUDY OF EL 14 ESTABLISHMENT, DEPARTAMENTO MORENO, SANTIAGO DEL ESTERO, ARGENTINA. Ecología Aplicada, 21(1), 13-23. https://doi.org/10.21704/rea.v21i1.1871