ESTIMATION OF RELATIVE CHLOROPHYLL CONCENTRATIONS IN POTATO (Solanum tuberosum L.) LEAFLET USING VEGETATION REFLECTANCE TECHNIQUES

Authors

DOI:

https://doi.org/10.21704/rea.v21i2.1961

Keywords:

chlorophyll, reflectance, Solanum tuberosum L.

Abstract

The amount of solar energy absorbed by plants is largely a function of the foliar concentration of photosynthetic pigments. Consequently, low concentrations of chlorophyll can directly limit the photosynthetic potential and thus the primary production of plants. This study describes a non[1]destructive method aiming to estimate the chlorophyll concentrations on potato leaves from the cultivars SA–2563, Pumamaqui and Purranca. This method is based on the interaction between light and vegetation and uses the first derivative of spectral reflectance from the crop canopy. For reference, we used the SPAD units obtained with a previously validated SPAD–502 chlorophyll meter. We found correlations greater than 90% between the amplitudes of signals obtained by deriving the spectral reflectance of leaves at wavelength about 720 nm and the chlorophyll concentrations obtained by the SPAD–502. Overall, this study showed the potential of techniques based on vegetation reflectance as robust indicators for estimating plant biochemical–physiological parameters.

Downloads

Download data is not yet available.

Author Biography

  • Roberto Quiroz, Director de Educación y Decano de la Escuela de Posgrado / CATIE-Centro Agronómico Tropical de Investigación y Enseñanza. Turrialba / Cartago / Costa Rica 30501

    International Potato Center (CIP). Crop and Systems Sciences Division. Lima, Perú. raquirozguerra@cgiar.org. (hasta el 2018).

References

Agoston M. K. (Ed.). 2005. Curves in Computer Graphics. In: Computer Graphics and Geometric Modeling: Implementation and Algorithms. 373–471. London: Springer.

Ali A. & Imran M. 2020. Evaluating the potential of red edge position (REP) of hyperspectral remote sensing data for real time estimation of LAI & chlorophyll content of kinnow mandarin (Citrus reticulata) fruit orchards. Scientia Horticulturae, 267: Art. 109326. DOI: 10.1016/j.scienta.2020.109326.

Ali A.M., Thind H.S., Varinderpal-Singh & Bijay-Singh. 2015. A framework for refining nitrogen management in dry direct-seeded rice using GreenSeekerTM optical sensor. Computers and Electronics in Agriculture, 110: 114–120. DOI: 10.1016/j.compag.2014.10.021.

Allen J.F., de Paula W.B.M., Puthiyaveetil S. & Nield J. 2011. A structural phylogenetic map for chloroplast photosynthesis. Trends in Plant Science, 16(12): 645–655. DOI: 10.1016/j.tplants.2011.10.004.

Bindi M., Hacour A., Vandermeiren K., Craigon J., Ojanperä K., Selldén G., Högy P., Finnan J. & Fibbi, L. 2002. Chlorophyll concentration of potatoes grown under elevated carbon dioxide and/or ozone concentrations. European Journal of Agronomy, 17(4): 319–335. DOI: 10.1016/S1161-0301(02)00069-2.

Borhan M.S., Panigrahi S., Satter M.A. & Gu H. 2017. Evaluation of computer imaging technique for predicting the SPAD readings in potato leaves. Information Processing in Agriculture, 4(4): 275–282. DOI: 10.1016/j.inpa.2017.07.005.

Bruinsma J. 1963. The quantitative analysis of chlorophylls A and B in plants extracts. Photochemistry and Photobiology, 2(2): 241–249. DOI: 10.1111/j.1751-1097.1963.tb08220.x.

Bryant D.A., Hunter C.N. & Warren M.J. 2020. Biosynthesis of the modified tetrapyrroles—the pigments of life. Journal of Biological Chemistry, 295(20): 6888–6925. DOI: 10.1074/jbc.REV120.006194.

Bürling K., Hunsche M. & Noga G. 2011. Use of blue–green and chlorophyll fluorescence measurements for differentiation between nitrogen deficiency and pathogen infection in winter wheat. Journal of Plant Physiology, 168(14): 1641–1648. DOI: 10.1016/j.jplph.2011.03.016.

Carter G.A., Cibula W.G. & Miller R.L. 1996. Narrow-band Reflectance Imagery Compared with ThermalImagery for Early Detection of Plant Stress. Journal of Plant Physiology, 148(5): 515–522. DOI: 10.1016/S0176-1617(96)80070-8.

Castro-Esau K.L., Sánchez-Azofeifa G.A. & Rivard B. 2006. Comparison of spectral indices obtained using multiple spectroradiometers. Remote Sensing of Environment, 103(3): 276–288. DOI: 10.1016/j.rse.2005.01.019.

CIP. 2022a. Base de datos de Banco de Germoplasma. CIP (Centro Internacional de la Papa). Consultado el 03 de mayo de 2022 de: https://genebank.cipotato.org/gringlobal/search.aspx.

CIP. 2022b. Catalogue of potato varieties and advanced clones. CIP (Centro Internacional de la Papa). Consultado el 03 de mayo de 2022 de: https://research.cip.cgiar.org/cipcatlg_ac/Catalogue.php?cipnumber=CIP380389.1.

Coste S., Baraloto C., Leroy C., Marcon É., Renaud A., Richardson A.D., Roggy J.-C., Schimann H., Uddling J. & Hérault B. 2010. Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Annals of Forest Science, 67(6): Art. 607. DOI: 10.1051/forest/2010020.

Ding P., Fuchigami L.H. & Scagel C.F. 2009. Simple Linear Regression and Reflectance Sensitivity Analysis Used to Determine the Optimum Wavelengths for the Nondestructive Assessment of Chlorophyll in Fresh Leaves Using Spectral Reflectance. Journal of the American Society for Horticultural Science, 134(1): 48–57. DOI: 10.21273/JASHS.134.1.48.

Endo T., Okuda T., Tamura M. & Yasuoka Y. 2001a. Estimation of net photosynthetic rate based on in-situ hyperspectral data. In: Smith W.L. & Yasuoka Y. (Eds) Hyperspectral Remote Sensing of the Land and Atmosphere. Second International Asia-Pacific Symposium on Remote Sensingo of the Atmosphere, Environment, and Space; 9-12 October 2000; Sendai, Japan. PROCEEDINGS, Vol. 4151: 214–221. SPIE. DOI: 10.1117/12.417010.

Endo T., Yasuoka Y., Tamura M. & Lab Y. 2001b. Spatial estimation of biochemical parameters of leaves with hyperspectral imager. In: 22nd Asian Conference on Remote Sensing, 5 - 9 November 2001, Singapore. PROCEEDINGS, HSI-02. Center for Remote Imaging, Sensing and Processing (CRISP), National University of Singapore; Singapore Institute of Surveyors and Valeurs (SISV); Asian Association on Remote Sensing (AARS). https://a-a-r-s.org/proceeding/ACRS2001/Papers/HSI-02.pdf.

Frankenberg C., Köhler P., Magney T.S., Geier S., Lawson P., Schwochert M., McDuffie J., Drewry D.T., Pavlick R. & Kuhnert A. 2018. The Chlorophyll Fluorescence Imaging Spectrometer (CFIS), mapping far red fluorescence from aircraft. Remote Sensing of Environment, 217: 523–536. DOI: 10.1016/j.rse.2018.08.032.

Hawkins T.S., Gardiner E.S. & Comer G.S. 2009. Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. Journal for Nature Conservation, 17(2): 123–127. DOI: 10.1016/j.jnc.2008.12.007.

Kira O., Linker R. & Gitelson A. 2015. Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands. International Journal of Applied Earth Observation and Geoinformation, 38: 251–260. DOI: 10.1016/j.jag.2015.01.003

Knipling E.B. 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment, 1(3): 155–159. DOI: 10.1016/S0034-4257(70)80021-9.

Lee E.T.Y. 1982. A simplified B-spline computation routine. Computing, 29(4): 365–371. DOI: 10.1007/BF02246763.

Li D., Cheng T., Zhou K., Zheng H., Yao X., Tian Y., Zhu Y. & Cao W. 2017. WREP: A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops. ISPRS Journal of Photogrammetry and Remote Sensing, 129: 103–117. DOI: 10.1016/j.isprsjprs.2017.04.024.

Lichtenthaler H.K. & Buschmann C. 2001. Chlorophylls and Carotenoids: Measurement and Characterization by UV-VIS Spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1): F4.3.1-F4.3.8. DOI: 10.1002/0471142913.faf0403s01.

LI-COR. 1989. LI-1800 Portable Spectroradiometer Instruction Manual. LICOR Inc. Lincoln, Nebraska. https://licor.app.boxenterprise.net/s/k8mr6zd0h6bjndwmqn6h.

LI-COR. 1990. LI-1800-02 Optical Radiation Calibrator Instruction Manual. LI-COR Inc. Lincoln, Nebraska. https://licor.app.boxenterprise.net/s/zx7hyrmk072qqiye1pvl.

Lin F.F., Qiu L.F., Deng J.S., Shi Y.Y., Chen L.S. & Wang K. 2010. Investigation of SPAD meter-based indices for estimating rice nitrogen status. Computers and Electronics in Agriculture, 71(Supplement 1): S60–S65. DOI: 10.1016/j.compag.2009.09.006.

Minolta. 1989. Chlorophyll Meter SPAD-502; Instruction Manual. Minolta Co., Ltd., Radiometric Instruments Operations. Osaka, Japan. https://www.konicaminolta.com.cn/instruments/download/manual/pdf/SPAD-502_Manual.pdf.

Mochizuki N., Tanaka R., Grimm B., Masuda T., Moulin M., Smith A.G., Tanaka A. & Terry M.J. 2010. The cell biology of tetrapyrroles: a life and death struggle. Trends in Plant Science, 15(9): 488–498. DOI: 10.1016/j.tplants.2010.05.012.

Moran J.A., Mitchell A.K., Goodmanson G. & Stockburger K.A. 2000. Differentiation among effects of nitrogen fertilization treatments on conifer seedlings by foliar reflectance: a comparison of methods. Tree Physiology, 20(16): 1113–1120. DOI: 10.1093/treephys/20.16.1113.

Murillo-Amador B., Ávila-Serrano N.Y., García-Hernández J.L., López-Aguilar R., Troyo-Diéguez E. & Kaya C. 2004. Relationship between a nondestructive and an extraction method for measuring chlorophyll contents in cowpea leaves. Journal of Plant Nutrition and Soil Science, 167(3): 363–364. DOI: 10.1002/jpln.200320361.

Parry C., Blonquist Jr. J.M. & Bugbee B. 2014. In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant, Cell & Environment, 37(11): 2508–2520. DOI: 10.1111/pce.12324.

Puangbut D., Jogloy S. & Vorasoot, N. 2017. Association of photosynthetic traits with water use efficiency and SPAD chlorophyll meter reading of Jerusalem artichoke under drought conditions. Agricultural Water Management, 188: 29–35. DOI: 10.1016/j.agwat.2017.04.001.

Putra B.T.W., Wirayuda H.C., Syahputra W.N.H. & Prastowo E. 2022. Evaluating in-situ maize chlorophyll content using an external optical sensing system coupled with conventional statistics and deep neural networks. Measurement, 189: Art. 110482. DOI: 10.1016/j.measurement.2021.110482.

Ramírez D.A., Yactayo W., Gutiérrez R., Mares V., De Mendiburu F., Posadas A. & Quiroz R. 2014. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Scientia Horticulturae, 168: 202–209. DOI: 10.1016/j.scienta.2014.01.036.

Rao N.R., Garg P.K., Ghosh S.K. & Dadhwal V.K. 2008. Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery. The Journal of Agricultural Science, 146(1): 65–75. DOI: 10.1017/S0021859607007514.

Rolando J.L., Ramírez D.A., Yactayo W., Monneveux P. & Quiroz R. 2015. Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany, 110: 27–35. DOI: 10.1016/j.envexpbot.2014.09.006.

Roosjen P.P.J., Brede B., Suomalainen J.M., Bartholomeus H.M., Kooistra L. & Clevers J.G.P.W. 2018. Improved estimation of leaf area index and leaf chlorophyll content of a potato crop using multi-angle spectral data – potential of unmanned aerial vehicle imagery. International Journal of Applied Earth Observation and Geoinformation, 66: 14–26. DOI: 10.1016/j.jag.2017.10.012.

Schepers J.S., Blackmer T. M., Wilhelm W.W. & Resende M. 1996. Transmittance and Reflectance Measurements of CornLeaves from Plants with Different Nitrogen and Water Supply. Journal of Plant Physiology, 148(5): 523–529. DOI: 10.1016/S0176-1617(96)80071-X.

Shi S., Xu L., Gong W., Chen B., Chen B., Qu F., Tang X., Sun J. & Yang J. 2022. A convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance. International Journal of Applied Earth Observation and Geoinformation, 108: Art. 102719. DOI: 10.1016/j.jag.2022.102719.

Song D., Gao D., Sun H., Qiao L., Zhao R., Tang W. & Li M. 2021a. Chlorophyll content estimation based on cascade spectral optimizations of interval and wavelength characteristics. Computers and Electronics in Agriculture, 189: Art. 106413. DOI: 10.1016/j.compag.2021.106413.

Song D., Qiao L., Gao D., Li S., Li M., Sun H. & Ma J. 2021b. Development of crop chlorophyll detector based on a type of interference filter optical sensor. Computers and Electronics in Agriculture, 187: Art. 106260. DOI: 10.1016/j.compag.2021.106260.

Sui J., Qin Q., Ren H., Sun Y., Yuan H. & Zhang T. 2018. A Modified Ratio Vegetation Index: A Novel Method for Remote Estimation of Leaf Chlorophyll Content for Winter Wheat. In: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. 7354–7357. Proceedings of the IEEE. DOI: 10.1109/IGARSS.2018.8517909.

Tanaka R. & Tanaka A. 2011. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(8): 968–976. DOI: 10.1016/j.bbabio.2011.01.002.

Uddling J., Gelang-Alfredsson J., Piikki K. & Pleijel H. 2007. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynthesis Research, 91(1): 37–46. DOI: 10.1007/s11120-006-9077-5.

Van der Mescht A., De Ronde J. & Rossouw F. 1999. Chlorophyll fluorescence and chlorophyll content as a measure of drought tolerance in potato. South African Journal of Science, 95(9): 407–412. https://hdl.handle.net/10520/AJA00382353_8045.

Wang H.-f., Huo Z.-g., Zhou G.-s., Liao Q.-h., Feng H.-k. & Wu L. 2016. Estimating leaf SPAD values of freeze-damaged winter wheat using continuous wavelet analysis. Plant Physiology and Biochemistry, 98: 39–45. DOI: 10.1016/j.plaphy.2015.10.032.

Yuan Z., Ata-Ul-Karim S.T., Cao Q., Lu Z., Cao W., Zhu Y. & Liu X. 2016. Indicators for diagnosing nitrogen status of rice based on chlorophyll meter readings. Field Crops Research, 185: 12–20. DOI: 10.1016/j.fcr.2015.10.003.

Zhang J., Tian H., Wang D., Li H. & Mouazen A.M. 2021. A novel spectral index for estimation of relative chlorophyll content of sugar beet. Computers and Electronics in Agriculture, 184: Art. 106088. DOI: 10.1016/j.compag.2021.106088.

Zhang K., Ge X., Liu X., Zhang Z., Liang Y., Tian Y., Cao Q., Cao W., Zhu Y. & Liu X. 2017. Evaluation of the chlorophyll meter and GreenSeeker for the assessment of rice nitrogen status. Advances in Animal Biosciences, 8(2), 359–363. DOI: 10.1017/S2040470017000917.

Zhang X., Sun H., Qiao X., Yan X., Feng M., Xiao L., Song X., Zhang M., Shafiq F., Yang W. & Wang C. 2022. Hyperspectral estimation of canopy chlorophyll of winter wheat by using the optimized vegetation indices. Computers and Electronics in Agriculture, 193: Art. 106654. DOI: 10.1016/j.compag.2021.106654.

Zhao R., An L., Tang W., Gao D., Qiao L., Li M., Sun H. & Qiao J. 2022. Deep learning assisted continuous wavelet transform-based spectrogram for the detection of chlorophyll content in potato leaves. Computers and Electronics in Agriculture, 195: Art. 106802. DOI: 10.1016/j.compag.2022.106802.

Zhao Y., Yan C., Lu S., Wang P., Qiu G.Y. & Li R. 2019. Estimation of chlorophyll content in intertidal mangrove leaves with different thicknesses using hyperspectral data. Ecological Indicators, 106: Art. 105511. DOI: 10.1016/j.ecolind.2019.105511.

Zheng T., Liu N., Wu L., Li M., Sun H., Zhang Q. & Wu J. 2018. Estimation of Chlorophyll Content in Potato Leaves Based on Spectral Red Edge Position. IFAC-PapersOnLine, 51(17): 602–606. DOI: 10.1016/j.ifacol.2018.08.131.

Zhu Y., Mao H., Li P. & Wu Y. 2011. Measurement of lettuce leaf chlorophyll content by means of VIS-NIR spectroscopy. In: International Conference on Remote Sensing, Environment and Transportation Engineering. 2250–2253. Proceedings of the IEEE. DOI: 10.1109/RSETE.2011.5964758.

Downloads

Published

2023-01-06

Issue

Section

Artículos originales

How to Cite

Loayza, H., Calderón R. † , A., Gutiérrez R., R. O. ., Céspedes F., E., & Quiroz, R. (2023). ESTIMATION OF RELATIVE CHLOROPHYLL CONCENTRATIONS IN POTATO (Solanum tuberosum L.) LEAFLET USING VEGETATION REFLECTANCE TECHNIQUES. Ecología Aplicada, 21(2), 91-101. https://doi.org/10.21704/rea.v21i2.1961