Carbon stored in aerial biomass and its economic valuation in the agroforestry systems of the EEA San Bernardo, Madre de Dios - Peru

Authors

  • Edith R. Clemente-Arenas Estación Experimental Agraria San Bernardo – Instituto Nacional de Innovación Agraria (INIA), Madre de Dios, Perú.

DOI:

https://doi.org/10.21704/rfp.v37i1.1593

Keywords:

Peruvian Amazon, Agroforestry systems, Aerial biomass, Carbon stock

Abstract

 

Agroforestry systems are a sustainable management alternative for land degraded by conventional agriculture in the Peruvian Amazon, this could prevent further deforestation of forests and the loss of more ecosystems. The tree component in agroforestry systems makes them more similar to natural forests than many other land use systems such as pastures, monocultures, among others. This characteristic also affects the carbon sequestration potential of agroforestry systems, since they represent a considerable carbon sink both above and below ground. Consequently, it can represent a considerable economic income from carbon credits, which is an international decon­tamination mechanism to reduce polluting emissions to the environment, with a relatively new market and with great relevance in mitigating climate change. In this sense, the carbon stored in the aerial biomass of seven agroforestry systems established more than 16 years ago at the San Bernardo Agricultural Experimental Station (EEA) was quantified and economically valued. The diameter of fruit and forest species was used as input for the allometric equations that allowed us to estimate biomass and carbon stored in the tree component of agroforestry systems. The seven agroforestry systems of the EEA San Bernardo have a total of 483.81 Mg of carbon stored in their aerial biomass. This amount of carbon represents USD $13,353.16 in carbon credits for the 2020 price. Brazil nut (Bertholletia excelsa Bonpl.) was the species with the highest amount of carbon stored among the seven agroforestry systems, while pashaco (Schizolobium amazonicum Huber ex Ducke) showed considerable carbon storage despite being only five years old. Our results show that some combinations of forest and fruit species generate interspecific competition that favors SAF, making it more productive in terms of growth and carbon storage.

Downloads

Download data is not yet available.

References

Arevalo, LA; Alegre, JC; Vilcahuaman, LJM. 2002. Metodologia para estimar o estoque de carbono em diferentes sistemas de uso da ter¬ra. Embrapa Florestas, Colombo, Brasil. Con¬sultado 15 mar. 2021. Disponible en https:// ainfo.cnptia.embrapa.br/digital/bitstream/ item/17083/1/doc73.pdf.

Brancher, T. 2010. Estoque e ciclagem de car¬bono de sistemas agroflorestais em Tomé- Açu, Amazônia Oriental (en línea). Tesis M. Sc. Belém, Para, Brasil. Universidade Federal do Pará. 58 p. Consultado 15 mar. 2021. Dis¬ponible en https://ainfo.cnptia.embrapa.br/ digital/bitstream/item/61103/1/Disserta¬cao-Tobias-Brancher.pdf.

Dinkelmeyer, H; Lehmann, J; Kaiser, K; Teixei¬ra, W;. Renck, A; Zech, W. 2002. Fate of applied N fertilizer in mixed cropping systems in the Central Amazon. In III Congreso brasileiro de Sistemas Agroflorestais. EMBRAPA, Manaus, Brasil. p. 196-198 Consultado 15 mar. 2021. Disponible en https://www.embrapa.br/busca¬-de-publicacoes/-/publicacao/670612/fate-o¬f-applied-n-fertilizer-in-mixed-cropping-sys¬tems-in-the-central-amazon.

Jaimez, RE; Araque, O; Guzman, D; Mora, A; Espinoza, W; Tezara, W. 2013. Agroforestry sys¬tems of timber species and cacao: survival and growth during the early stages. Journal of Agri¬culture and Rural Development in the Tropics and Subtropics 114(1):1–11. Consultado 15 mar. 2021. Disponible en https://jarts.info/index. php/jarts/article/view/2012112642171/424.

Jaramillo, VJ. 2004. El ciclo global del carbono. En Martínez, J; Fernández, A (coord.). Cambio climático: una visión desde México 77. 1 ed. México. Instituto Nacional de Ecología. p. 77- 85. Consultado el 23 de ago. 2021. Disponible en https://wwflac.awsassets.panda.org/down-loads/cambio_climatico_una_vision_desde_ mexico_martinez_bremauntz.pdf.

Labarta, RA; Weber, JC. 1998. Valorización económica de bienes tangibles de cinco es¬pecies arbóreas agroforestales en la Cuenca Amazónica Peruana. Revista Forestal Cen¬troamericana 23:12-21. Consultado 15 mar. 2021. Disponible en https://repositorio.catie. ac.cr/handle/11554/9705.

Lavelle, P; Rodríguez, N; Arguello, O; Bernal, J; Botero, C; Chaparro, P; Gómez, Y; Gutiér¬rez, A; Del Hurtado, M; Loaiza, S; Pullido, S; Rodríguez, E; Sanabria, C; Velásquez, E; Fonte, S. 2014. Soil ecosystem services and land use in the rapidly changing Orinoco River Ba¬sin of Colombia. Agriculture, Ecosystems & Environment 185:106–117. DOI: https://doi. org/10.1016/j.agee.2013.12.020.

Mayorca Morales, JP; Motta Fernandez, BA; Rios Brito, EI; Tenazoa Huitron, GI. (2018). Oportunidades de desarrollo del mercado de bonos de carbono en el Perú (en línea). Tesis M. Sc. Lima, Perú. Universidad Esan. 157 p. Con¬sultado 4 may. 2022. Disponible en https://repo-sitorio.esan.edu.pe/handle/20.500.12640/1405.

Montagnini, F; Nair, PKR. 2004. Carbon se¬questration: an underexploited environmental benefit of agroforestry systems. Agroforestry Systems 61(281):281-295. DOI: https://doi. org/10.1023/B:AGFO.0000029005.92691.79.

Nair, PKR. 2011. Agroforestry systems and environmental quality: introduction. Jour¬nal of environmental Quality 40(3):784–790. Consultado 15 mar. 2021. DOI: https://doi. org/10.1002/jpln.200800030.

Nair, PKR. 1993. An introduction to agroforest¬ry. Dordrecht, Paises Bajos, ICRAF.

Nair, PKR; Kumar, BM; Nair, VD. 2009. Agro¬forestry as a strategy for carbon sequestration. Journal of plant nutrition and soil science 172(1):10–23. Consultado 15 mar. 2021. DOI: https://doi.org/10.1002/jpln.200800030.

Navarro, C; Montagnini, F; Hernández, G. 2004. Genetic variability of Cedrela odorata Linnae¬us: results of early performance of provenanc¬es and families from Mesoamerica grown in association with coffee. Forest Ecology and Management 192(2-3):217–227. Consultado 15 mar. 2021. DOI: https://doi.org/10.1016/j. foreco.2004.01.037.

Oelbermann, M; Voroney, RP; Gordon, AM. 2004. Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Can¬ada. Agriculture, ecosystems & environment 104(3):359–377. Consultado 15 mar. 2021. DOI: https://doi.org/10.1016/j.agee.2004.04.001.

Pallardy, SG. 2010. Physiology of woody plants. Academic Press. Consultado 23 ago. 2021. Disponible en https://www.sciencedi¬rect.com/book/9780120887651/physiolo¬gy-of-woody-plants.

Paul, C; Weber, M. 2013. Intercropping Ced¬rela odorata with shrubby crop species to re¬duce infestation with Hypsipyla grandella and improve the quality of timber. International Scholary Research Notices Forestry 2013: 1-10. DOI: https://doi.org/10.1155/2013/637410.

Perz, SG; Aramburú, C; Bremner, J. 2005. Pop¬ulation, land use and deforestation in the Pan Amazon Basin: a comparison of Brazil, Boliv¬ia, Colombia, Ecuador, Perú and Venezuela. Environment, development and sustainability 7:23–49. DOI: https://doi.org/10.1007/s10668- 003-6977-9.

Plath, M; Mody, K; Potvin, C; Dorn, S. 2011. Establishment of native tropical timber trees in monoculture and mixed-species planta¬tions: small-scale effects on tree performance and insect herbivory. Forest Ecology and Management 261:741–750. DOI: https://doi. org/10.1016/j.foreco.2010.12.004.

Schöngart, J; Gribel, R; da Fonseca-Junior, S; Haugaasen, T. 2015. Age and growth patterns of Brazil nut trees (Bertholletia excelsa Bonpl.) in Amazonia, Brazil. Biotropica 47(5):550–558. DOI: https://doi.org/10.1111/btp.12243.

Schroth, G; D’Angelo, SA; Teixeira, WG; Haag, D; Lieberei, R 2002. Conversion of second¬ary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. Forest ecology and management 163(1- 3):131–150. DOI: https://doi.org/10.1016/ S0378-1127(01)00537-0.

Schroth, G; da Mota, M; Elias, ME. 2015. Growth and nutrient accumulation of Brazil nut trees (Bertholletia excelsa) in agroforestry at different fertilizer levels. Journal of Forest¬ry Research (26):347–353. DOI: https://doi. org/10.1007/s11676-015-0037-9.

Schulze, ED; Wirth, C; Heimann, M. 2000. Managing forests after Kyoto. Science 289:2058-2059. DOI: http://doi.org/10.1126/ science.289.5487.2058.

SENAMHI (Servicio Nacional de Metereologia e Hidrología, Perú); ANA (Autoridad Nacional del Agua, Perú). 2010. Estudio diagnóstico hi¬drológico de la cuenca Madre de Dios cuenca del río zaña. Lima, Perú. Consultado 15 mar. 2021. Disponible en https://repositorio.ana. gob.pe/handle/20.500.12543/35.

Seeberg, C. 2010. Carbon Finance Possibilities for Agriculture, Forestry and Other Land Use Projects in a Smallholder Context. Consultado el 28 abr. 2022. Disponible en http://www.fao. org/fileadmin/templates/ex_act/pdf/carbone_ finance.pdf.

Sendeco2. 2021. Precios CO2 (en línea, sitio web). Consultado 15 mar. 2021. Disponible en https://www.sendeco2.com/es/precios-co2.

Sotelo Montes, C; Weber, JC. 1997. Priorización de especies arbóreas para sistemas agroforesta¬les en la selva baja del Perú. Agroforestería en las Américas 4(14):12-17. Consultado 15 mar. 2021. Disponible en https://repositorio.catie. ac.cr/bitstream/handle/11554/6702/A2654e. pdf?sequence=1&isAllowed=y.

Tonini, H; de Oliveira, MM; Schwengber, D. 2008. Growth of Amazon native species sub¬mitted to the plantation in the Roraima state. Ciência Florestal 18(2):151–158. DOI: https:// doi.org/10.5902/19805098453.

Tscharntke, T; Clough, Y; Bhagwat, SA; Buchori, D; Faust, H; Hertel, D; Hölscher, D; Juhrbandt, J; Kessler, M; Perfecto, I; Scherber, C; Schroth, G; Veldkamp, E; Wanger, TC. 2011. Multi¬functional shade-tree management in tropical agroforestry landscapes – a review. Journal of Applied Ecology 48:619–629. DOI: https://doi. org/10.1111/j.1365-2664.2010.01939.x.

UNFCCC. 1997. Kyoto Protocol to the United Nations Framework Convention on Climate Change. In Proceedings of the 3rd conference of the Parties, FCCC/CP/1997/L.7/Add.I. United Nations Framework Convention on Climate Change.

Uchida, T; Campos, MAA. 2000. Influência do sombreamento no crescimento de mu¬das de cumaru (Dipteryx odorata (Aubl.) Willd.-Fabaceae), cultivadas em viveiro. Acta amazônica 30(1):107-114. DOI: https://doi. org/10.1590/1809-43922000301114.

Weber, JC; Montes, CS. 2008. Geographic variation in tree growth and wood density of Guazuma crinita Mart. in the Peruvian Ama¬zon. New Forests (36):29-52. DOI: https://doi. org/10.1007/s11056-007-9080-5.

Young, A (ed). 1997. Agroforestry for soil man¬agement. 2 ed. Nairobi, Kenya, CAB internatio¬nal. ICRAF. Consultado 15 mar. 2021. Dispo¬nible en https://www.cabdirect.org/cabdirect/ abstract/19971913255.

Downloads

Published

2022-07-27

Issue

Section

Artículos originales

How to Cite

Clemente-Arenas, E. R. . (2022). Carbon stored in aerial biomass and its economic valuation in the agroforestry systems of the EEA San Bernardo, Madre de Dios - Peru. Revista Forestal Del Perú, 37(1), 54-68. https://doi.org/10.21704/rfp.v37i1.1593