MASCULINIZACIÓN DE ALEVINOS DE TILAPIA DEL NILO (Oreochromis niloticus) CON EL INHIBIDOR DE AROMATASA LETROZOL

Autores/as

  • Elsa Vega Galarza Facultad de Pesquería, Universidad Nacional Agraria La Molina, Lima15024, Perú.
  • Nieves Sandoval Chaupe Laboratorio de Ictiopatología, Universidad Nacional Mayor de San Marcos, Lima, Perú.
  • Beatriz Elena Angeles Escobar Facultad de Pesquería, Universidad Nacional Agraria La Molina, Lima15024, Perú.

DOI:

https://doi.org/10.21704/ac.v82i2.1789

Palabras clave:

inhibidor de aromatasa, inversión sexual , letrozo, masculinización, tilapia

Resumen

Se presentan los resultados de dos experimentos para la masculinización de alevinos de tilapia (Oreochromis niloticus) con un inhibidor de aromatasa, letrozol, administrado en el alimento. En el primer experimento se evaluó el efecto sobre el crecimiento, la supervivencia y el porcentaje de masculinización de peces no diferenciados sexualmente, sometidos a dosis de letrozol de 50 (T1), 100 (T2) y 200 (T3) mg kg-1 en el alimento durante cuatro semanas. Un control negativo (C0) recibió alimento sin letrozol y un control positivo (C) recibió alimento con 60 mg kg-1 de 17 α metiltestosterona (MT). No hubo diferencias significativas entre tratamientos y controles en el crecimiento (en longitud y peso) y la supervivencia. Los porcentajes de masculinización fueron 90%, 100% y 93%. en T1, T2 y T3 respectivamente sin diferencias significativas. La masculinización en el grupo C fue 66% y en el grupo C0 fue 45%, mostrando diferencias significativas entre sí y también respecto a los 3 tratamientos con letrozol. Se encontró 3% de hembras en T1 y 7% de peces con gónadas intersexo tanto en T1 como en T3. En el segundo experimento, se suministró una dosis de 50 mg kg-1 de letrozol durante dos semanas (2S) y tres semanas (3S). Los resultados dieron 73% de machos para 2S y 82% para 3S con diferencias significativas. Se concluyó que el letrozol en dosis entre 50 y 200 mg kg-1 logró más del 90% de machos en 4 semanas sin afectar la supervivencia y el crecimiento.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

• Akaike, H. (1974). A new look at the statistical Abd Al-Hakim, N., Hessen, M., Rizkalla, E., Hegazi, A., Tahoun, A., & Khalfalla, A. (2013). Comparative study for the production of the male Nile tilapia between inter-specific hybridization and hormonal sex reversal. Egyptian Journal of Aquatic Biology and Fisheries, 17(2), 73-89. https://doi.org/10.12816/0011034.

• Abou Zied, R., Ali, A. (2015). Effect of feeding rate and frequency on growth performance, sex conversion ratio and profitability of nile tilapia (Oreochromis niloticus) fry in hapa at commercial hatcheries. Egyptian Journal of Nutrition and Feeds, 18(Issue 2 Special), 451-459. https://doi.org/10.21608/ejnf.2015.104520

• Afonso, L.O.B., Iwama, G.K., Smith, J., & Donaldson, E.M. (2000). Effects of the aromatase inhibitor Fadrozole on reproductive steroids and spermiation in male coho salmon (Oncorhynchus kisutch) during sexual maturation. Aquaculture 188, 175–187. https://doi.org/10.1016/S0044- 8486(00)00335-5

• Afonso, L.O.B., Wassermann, G.J., & Terezinha de Oliveira, R. (2001). Sex reversal in Nile tilapia (Oreochromis niloticus) using a nonsteroidal aromatase inhibitor. Journal of Experimental Zoology 290 (2), 177-181. https://doi.org/10.1002/jez.1047

• Alanís González, A., Rodríguez Montes de Oca, G. A., Brito Martínez, X. G., & Román Reyes, J. C. (2014). Validación del uso de inhibidores sintéticos de la aromatasa en la masculinización de la tilapia Oreochromis niloticus. Revista Biológico Agropecuaria Tuxpan, 2(1), 434–440. https://doi.org/10.47808/revistabioagro.v2i1.331

• Azaza, M., Assad, A., Maghrbi, W., & El-Cafsi, M. (2013). The effects of rearing density on growth, size heterogeneity and inter-individual variation of feed intake in monosex male Nile tilapia Oreochromis niloticus L. Animal, 7(11),1865- 1874. https://doi.org/10.1017/S1751731113001493

• Baltazar, P., Mendoza, D. & Castañeda, M. (2018). Tilapia Potential in Peru. Word Aquaculture Magazine. 49(3):35-40. https://www.was.org/Magazine/Vol/49/3#.YcrLD GjMJPY

• Barry, T., Marwah, A., & Marwah, P. (2007). Stability of 17α-methyltestosterone in fish feed. Aquaculture 271,1-4. https://doi.org/10.1016/j.aquaculture.2007.05.001

• Baroiller, J.F., D'Cotta, H., Bezault, E., Wessels, S., & Hoerstgen-Schwark, G. (2009). Tilapia sex determination: Where temperature and genetics meet. Comparative Biochemistry and Physiology, Part A: Molecular & Integrative Physiology 153 (1), 30–38. https://doi.org/10.1016/j.cbpa.2008.11.018

• Bhatta, S., Iwai, T., Miura, C., Higuchi, M., Shimizu- Yamaguchi, S., Fukuda, H., & Miura, T. (2012). Gonads directly regulate growth in teleosts. Proceedings of the National Academy of Sciences of the United States of America, www.pnas.org/lookup/suppl/doi:10.1073/pnas.1118704109

• Bhatnagar, A.S. (2007). The discovery and mechanism of action of letrozole, Breast Cancer Research and Treatment 105(1), 7-17. https://doi.org/10.1007/s10549-007-9857-4

• Beardmore J.A., Mair G.C., & Lewis R.I. (2001). Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Aquaculture 197, 283–301. https://doi.org/10.1016/S0044-8486(01)00590-7

• Betancur, J.J., Quintero, J.C., Ostos, H., Barreiro- Sanchez, F., & Olivera-Angel, M. (2014). Effectiveness of the aromatase (P450 Arom) inhibitors Letrozole and Exemestane for masculinization of red tilapia (Oreochromis spp.). Revista Colombiana de Ciencias Pecuarias, ISSN- e 0120-0690, 27 (1), 47-53.

• Bombardelli R.A., Hayashi C., & Meurer F. (2004). Aplicacao de metodos diretos e indiretos para a producao de populacoes monossexuais na tilapicultura. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR 7 (1),57-68. https://revistas.unipar.br/index.php/veterinaria/arti cle/view/545

• Brown-Peterson, N. J., Wyanski, D. M., Saborido- Rey, F., Macewicz, B. J., & Lowerre-Barbieri, S.K. (2011). A Standardized Terminology for Describing Reproductive Development in Fishes, Marine and Coastal Fisheries, 3(1), 52-70. https://doi.org./10.1080/19425120.2011.555724

• Canadian Council on Animal Care (2010). CCAC guidelines on: Euthanasia of animals used in science. 32. . https://www.ccac.ca/Documents/Standards/Guidel ines/Euthanasia.pdf

• Das R., Rather M.A., Basavaraja, N., Sharma R., & Udit U.K. (2012). Effect of Nonsteroidal Aromatase Inhibitor on Sex Reversal of Oreochromis mossambicus (Peters, 1852). Israeli Journal of Aquaculture-Bamidgeh, 64(4),1-6. http://hdl.handle.net/10524/22926

• Drummond, C. D., Murgas, L. D. S., & Vincetini, B. (2009). Growth and survival of tilapia Oreochromis niloticus (Linnaeus, 1758) submitted to different temperatures during the process of sex reversal. Ciência e Agrotecnologia, 33(3), 895–902. https://doi.org/10.1590/S1413- 70542009000300033.

• El-Greisy, Z. A., & El-Gamal, A. E. (2012). Monosex production of tilapia, Oreochromis niloticus using different doses of 17α- methyltestosterone with respect to the degree of sex stability after one year of treatment. The Egyptian Journal of Aquatic Research, 38(1), 59-66. https://doi.org/10.1016/j.ejar.2012.08.005

• El-Sayed, A., El-Sayeda H., & Heba AG. (2012). Effects of phytoestrogens on sex reversal of Nile tilapia (Oreochromis niloticus) larvae fed diets treated with 17α-Methyltestosterone Aquaculture 360–361. 58–63. https://doi.org/10.1016/j.aquaculture.2012.07.010

• Ferdous, Z., & Ali, M. M. (2011). Optimization of hormonal dose during masculinization of tilapia (Oreochromis niloticus) fry. Journal Bangladesh Agriculture University Journal, 9(2), 359–364. https://doi.org/10.22004/ag.econ.208687

• Gao, Z.X., Wang, H.P, Wallat, G., Yao, H., Rapp, D., O’Bryant, P., MacDonald, R., & Wang W.M. (2010). Effects of a nonsteroidal aromatase inhibitor on gonadal differentiation of bluegill sunfish Lepomis macrochirus. Aquaculture Research, 41: 1282-1289. https://doi.org/10.1111/j.1365-2109.2009.02414.x

• Green, B.W., Teichert-Coddington, D.R. (2000). Human Food Safety and Environmental Assessment of the Use of 17α-Methyltestosterone to Produce Male Tilapia in the United States. Journal of the World Aquaculture Society, 31: 337– 357. https://doi.org/10.1111/j.1749- 7345.2000.tb00885.x

• Hiott, A., & Phelps, R.P. (1993) Effects of initial age and size on sex reversal of Oreochromis niloticus fry using methyltestosterone. Aquaculture 112:4. https://doi.org/10.1016/0044- 8486(93)90391-B

• Katare, M. B., Basavaraja, N., Joshi, H. D., & Archana, C. (2015). Effect of letrozole on masculinization of Siamese fighting fish (Betta splendens). Journal of Applied and Natural Science, 7(1), 425-433.

https://doi.org/10.31018/jans.v7i1.627

• Klipp, S. P., Pereira, M. O., & Jatobá, A. (2019). Influência da frequência alimentar durante inversão sexual da tilápia do nilo. Revista Científica Rural, 21:1, p. 205-216. https://doi.org/10.30945/rcr- v21i1.304

• Kobayashi Y., Nagahama Y., & Nakamura M. (2013). Diversity and Plasticity of Sex Determination and Differentiation in Fishes. Sexual Development 7:115-125. https://doi.org/10.1159/000342009

• Kosai, P., Jiraungkoorskul, W., Sachamahithinant, C., & Jiraungkoorskul, K. (2011). Induction of testis-ova in nile tilapia (Oreochromis niloticus) exposed to 17β-estradiol. Natural Science, 3(03), 227. http://dx.doi.org/10.4236/ns.2011.33029

• Kwon, J.Y., Haghpanah, V., Kogson-Hurtado, L.M., McAndrew, B.J., & Penman, D.J. (2000). Masculinization of genetic female Nile tilapia (Oreochromis niloticus) by dietary administration of an aromatase inhibitor during sexual differentiation. Journal of Experimental Zoology, 287 (1): 46-53. https://doi.org/10.1002/1097- 010X(20000615)287:1<46::AID-JEZ6>3.0.CO;2- X

• Macintosh D. (2010). Risks Associated with Using Methyl Testosterone in Tilapia Farming. Disponible en http://media.sustainablefish.org/MT_WP.pdf

• Mainardes-Pinto C.S.R., Fenerich-Verani N., CamposB.E.S., & Silva A.L. (2000). Masculinização da tilápia do Nilo, Oreochromis niloticus, utilizando diferentes rações e diferentes doses de 17 a-metiltestosterona. Revista Brasileira de Zootecnia 29: 3pp. 654-659. https://doi.org/10.1590/S1516- 35982000000300003.

• Mlalila, N., Mahika, C.G., Kalombo, L., Swai, H.S., & Hilonga, A. (2015). Human food safety and environmental hazards associated with the use of methyltestosterone and other steroids in production of all-male tilapia. Environmental Science and Pollution Research, 22, 4922-4931. https://doi.org/10.1007/s11356-015-4133-3

• Meurer, F., Bombardelli R.A., Santana da Paixao P., Rosa da Silva, L.C., & Dena dos Santos, L. (2012). Feeding frequency on growth and male percentage during sexual reversion phase of Nile tilapia. Revista Brasileira de Saúde e Produção Animal 13: 4, pp. 1133-1142. http://www.rbspa.ufba.br

• Neumann, E., Ribeiro, T.C., & de Souza Braga, F.M. (2009). Desempenho de três linhagens de tilápia submetidas ao tratamento com 17-α - metiltestosterona em condições ambientais não controladas. Revista Brasileira de Zootecnia 38:6. p. 973-979. https://doi.org/10.1590/S1516- 35982009000600001

• Noga, E.J. (2010). Fish diseases: diagnosis and treatment. John Wiley & Sons.

• Núñez, J., & Duponchelle, F. (2009). Towards a universal scale to assess sexual maturation and related life history traits in oviparous teleost fishes. Fish Physiology and Biochemistry 35(1):167-80. https://doi.org/10.1007/s10695-008-9241-2

• Paul-Prasanth, B; Bhandari, R.K., Kobayashi, T., Horiguchi, R., Kobayashi, Y., Nakamoto, M., Shibata, Y., Sakai, F., Nakamura, M., & Nagahama, M. (2013). Estrogen oversees the maintenance of the female genetic program in terminally differentiated gonochorists. Scientific Reports 3: 2862. https://doi.org/10.1038/srep02862

• Phelps, R.P., & Popma, T.J. (2000). Sex reversal of tilapia. Costa-Pierce B.A.; Rakocy, J.E. Tilapia Aquaculture in the Americas 2 p. 34–59. The World Aquaculture Society, Baton Rouge, Louisiana, United States.

• Phelps, R. (2006). Hormone Manipulation of sex. Webster, CD; Lim, C (eds.). Tilapia: Biology, Culture, and Nutrition Capitulo 6 p 236. CRC Press, New York, 704 p.

• Phelps, R., & Okoko, M. (2011). A non- paradoxical dose response to 17α- methyltestosterone by Nile tilapia Oreochromis niloticus (L.): Effects on the sex ratio, growth and gonadal development. Aquaculture Research. 42: 549 – 558 https://doi.org/10.1111/j.1365- 2109.2010.02650.x

• Piferrer, F. (2001). Endocrine sex control strategies for the feminization of teleost fish. Aquaculture 197:1-4p. 229-281. https://doi.org/10.1016/S0044-8486(01)00589-0

• Popma T., & Green B. (1990). Reversión sexual de tilapias en lagunas de tierra. International Center for Aquaculture. Alabama Agricultural Experiment Station Auburn University US. Research and Development Series N° 35. 30 p.

• Rebouças, P.M., Rocha, R. S., Silva, M.C., Barbosa-Filho, J.A.D., Farias, WR, Pinto C.R.S., & Henrique J.C. (2014). Influence of environmental color on zootechnical performance and feeding behavior during masculinization of Nile tilapia. Journal of Animal Behaviour and Biometeorology 2: 126-130. http://dx.doi.org/10.14269/2318- 1265/jabb.v2n4p126-130

• Rima, N.N., Rahman, M.M., & Sarker, M.J. (2017). Optimization of 17-alpha Methyltestosterone (MT) Hormone Dose during Masculinization of Nile Tilapia (Oreochromis niloticus) fry. Journal of Noakhali Science and Technology University, 1: 35-41

• Rivero-Wendt, C., Miranda-Vilela, A. L., Domingues, I., Oliveira, R., Monteiro, M. S., Moura-Mello, M., Matias, R., Soares, A., & Grisolia, C. K. (2020). Steroid androgen 17 alpha methyltestosterone used in fish farming induces biochemical alterations in zebrafish adults. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering, 55(11), 1321–1332. https://doi.org/10.1080/10934529.2020.1790954

• Sanches, L. E. F., & Hayashi, C. (2008). Densidade de estocagem no desempenho de larvas de tilápia- do-Nilo (Oreochromis niloticus L.), durante a reversão sexual. Acta Scientiarum. Animal Sciences, 21, 619-625. https://doi.org/10.4025/actascianimsci.v21i0.4299

• Shen, Z.G., Fan, Q.X., Yan, W., Zhang, Y.L., & Wang, H.P. (2015). Effects of 17α- Methyltestosterone and Aromatase Inhibitor Letrozole on Sex Reversal, Gonadal Structure, and Growth in Yellow Catfish Pelteobagrus fulvidraco. The Biological Bulletin 228:2, 108-117 https://doi.org/10.1086/BBLv228n2p108

• Singh, A., & Srivastava, P.P. (2014). A CYP19 Based Sex Determination and Monosex Production in Aquaculture Species Oreochromis niloticus L. and a Cyprinid Cyprinus carpio L. Fisheries and Aquaculture Journal, 6, 1-6 10.4172/2150-3508.1000112

• Soltan, M., Hassaan, M., El-Nagaar, G., Mohammed, W., Abdelhamid1, A., El-Barbary, M., Mabrouk, E. (2013). Effect of rearing temperature and hormone treatment on sex ratio, survival and body weight of Oreochromis niloticus fry. Egyptian Journal of Aquatic Biology and Fisheries, 17(4), 13-23. https://doi.org/10.21608/ejabf.2013.2182.

• Sun, L. N., Jiang, X. L., Xie, Q.P., Yuan, J., Huang, B.F., Tao, W.J., & Wang, D.S. (2014). Transdifferentiation of differentiated ovary into functional testis by long-term treatment of aromatase inhibitor in Nile tilapia. Endocrinology, 155(4), 1476-1488. https://doi.org/10.1210/en.2013-1959

• Tachibana, L., Leonardo, A., Corrêa, C., & Saes, L. (2018). Stocking density of nile tilapia (Oreochromis niloticus) fry during sex reversal phase. Boletim Do Instituto De Pesca, 34(4), 483 - 488. https://www.pesca.agricultura.sp.gov.br/boletim/i ndex.php/bip/article/view/817

• Thanasupsin, S. P., Chheang, L., & Math, C. (2021). Ecological risk of 17α-methyltestosterone contaminated water discharged from a full water recirculating earthen masculinization pond, Human and Ecological Risk Assessment: An International Journal, 27:6, 1696-1714.

https://doi.org/10.1080/10807039.2021.1871845

• Teichert-Coddington, D., Manning, B., Eya, J. & Brock, D. (2000). Concentration of 17α- Methyltestosterone in HormoneTreated Feed: Effects of Analytical Technique, Fabrication, and Storage Temperature. Journal of the World Aquaculture Society, 31: 42-50. https://doi.org/10.1111/j.1749- 7345.2000.tb00696.x

• Trejo-Quezada, A., Calzada-Ruiz, D., Soriano- Luis, F., Valenzuela-Jimenez, N., Ramírez-Ochoa, M., Moreno-de la Torre, R., & Alcántar-Vázquez, J. P. (2021). Evaluación del periodo de masculinización en la tilapia del Nilo var spring empleando 17α-metiltestosterona: Periodo de hormonado en tilapia. Ecosistemas y Recursos Agropecuarios, 8(1). https://doi.org/10.19136/era.a8n1.2739.

• Wassermann, G. J., & Bertolla L. O. (2002). Validation of the aceto-carmine technique for evaluating phenotypic sex in nile tilapia (Oreochromis niloticus) fry. Ciência Rural, Santa Maria 32(1): 133-139. https://doi.org/10.1590/S0103- 84782002000100023.

• Xu, G., Huang, T., Gu, W., Liu, E., & Wang, B. (2021), Effects of letrozole and 17α- methyltestosterone on gonadal development in all- female triploid rainbow trout (Oncorhynchus mykiss). Aquaculture Research, 52: 2460-2469. https://doi.org/10.1111/are.15095

• Zanardi, M.F., Koberstein,T.C., Urbinati,E.C., Fagundes, M., dos Santos, M., & Mataqueiro, M.I. (2011). Concentrações de hormônio na carcaça de tilápias-do-nilo e maturação precoce após reversão sexual. Revista Brasileira de Zootecnia, 40:1 pp. 7- 11. https://doi.org/10.1590/S1516- 35982011000100002.

Descargas

Publicado

2021-12-30

Cómo citar

Vega Galarza, E. ., Sandoval Chaupe, . N., & Angeles Escobar, B. E. (2021). MASCULINIZACIÓN DE ALEVINOS DE TILAPIA DEL NILO (Oreochromis niloticus) CON EL INHIBIDOR DE AROMATASA LETROZOL. nales Científicos, 82(2), 262–278. https://doi.org/10.21704/ac.v82i2.1789

Número

Sección

Artículos originales / Ciencias Agrícolas y Biológicas