Elementos extractables con cloruro de potasio y acetato de amonio en suelos ácidos del Perú
DOI:
https://doi.org/10.21704/ac.v79i2.915Palabras clave:
suelo, ácido, extracción, elementos, acidez, cloruro de potasio, acetato de amonio, Perú.Resumen
Cantidades de elementos extractables con soluciones de cloruro de potasio (KCl) y acetato de amonio (CH3COONH4) comúnmente se designan como fracción intercambiable del suelo y sirven como índices de disponibilidad de nutrientes para plantas cultivadas y del peligro potencial existente en suelos contaminados. Los objetivos de este estudio fueron evaluar las cantidades de Al, Ca, Cu, Fe, H, Mg, Mn y Zn extractables con KCl y de K y Na extractables con CH3COONH4 en un grupo muy diverso de muestras de suelos ácidos del Perú y describir sus patrones de variación. Las concentraciones extractables promedio decrecieron en el orden Ca > Al > K > Mg > Fe > Na > H > Mn > Zn > Cu, mientras que las fracciones molares extractables medias disminuyeron de acuerdo con la secuencia Al > Ca > K > Mg > Na > H > Mn > Fe > Zn > Cu. Los datos mostraron una variabilidad muy alta. En promedio, las concentraciones Ca y Al sumaron 70 % del total. Al añadir K y Mg, se alcanzó 90 %. El pH estuvo directamente relacionado con el contenido de Mg y, en orden decreciente, con Ca y Na. Por otra parte, el pH presentó una relación inversa con los contenidos de Al, Cu, Fe, H y Zn. Las muestras con pH menor que tres y mayores contenidos de Cu, Fe y Zn del estudio tuvieron una porción soluble en agua significativa del total extractable.
Descargas
Referencias
Alling, V.; Hale, S.E.; Martinsen, V.; Mulder, J.; Smebye, A.; Breedveld, G.D. and Cornelissen, G. 2014. The role of biochar in retaining nutrients in amended tropical soils. Journal of Plant Nutrition and Soil Science, 177(5):671-680.
Alloway, B.J. (Comp.). 2013. Heavy metals in soils. 3ra Edición. Springer Science+Business Media, Dordrecht, Países Bajos. 849p.
Amacher, M.C.; Henderson, R.E.; Breithaupt, M.D.; Seale, C.L. and LaBauve, J.M. 1990. Unbuffered and buffered salt methods for exchangeable cations and effective cation-exchange capacity. Soil Science Society of America Journal, 54(4):1036-1042.
Arenas-Lago, D.; Andrade, M.L.; Lago-Vila, M.; Rodríguez-Seijo, A. and Vega, F.A. 2014. Sequential extraction of heavy metals in soils from a copper mine: Distribution in geochemical fractions. Geoderma, 230-231:108-118.
Asensio, V.; Vega, F.A.; Andrade, M.L. and Covelo, E.F. 2013. Technosols made of wastes to improve physico-chemical characteristics of a copper mine soil. Pedosphere, 23(1):1-9.
Bazán T., R. 1996. Manual para el análisis químico de suelos, aguas y plantas. Universidad Nacional Agraria La Molina - Fundación Perú, Lima, Perú. 55 p.
Behera, S.K. and Shukla, A.K. 2015. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degradation & Development. 26(1):71-79.
Deressa, A.; Bote, B and; Legesse, H. 2013. Evaluation of soil cations in agricultural soils of east Wollega zone in south western Ethiopia. Science, Technology and Arts Research Journal, 2(1):10-17.
Dolar, S.G. and Keeney, D.R. 1971. Availability of Cu, Zn and Mn in soils: II. Chemical extractability. Journal of the Science of Food and Agriculture, 22(6):279-282.
Garrels, R.M. and Christ, C.L. 1965. Solutions, minerals, and equilibria. Freeman, San Francisco, California, EEUU. 450 p.
Harris, D.C. 2016. Quantitative chemical analysis. 9na Edición. W.H. Freeman & Company, New York, EEUU. 792 p.
Hengl, T.; Heuvelink, G.B.M.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Shepherd, K.D.; Sila, A.; MacMillan, R.A.; Mendes de Jesus, J.; Tamene, L. and Tondoh, J.E. 2015. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE, 10(6):e0125814. doi:10.1371/journal.pone.0125814.
James, J.; Littke, K.; Bonassi, T. and Harrison, R. 2016. Exchangeable cations in deep forest soils: Separating climate and chemical controls on spatial and vertical distribution and cycling. Geoderma, 279:109-121.
Kim, C.; Choo, G.C.; Cho, H.S. and Lim, J.T. 2015. Soil properties of cultivation sites for mountain-cultivated ginseng at local level. Journal of Ginseng Research, 39(1):76-80.
Lindsay, W.L. 1979. Chemical equilibria in soils. John Wiley & Sons, New York, EEUU.
Lopes, A.S. and Cox, F.R. 1977. A survey of the fertility status of surface soils under “cerrado” vegetation in Brazil. Soil Science Society of America Journal, 41(4):742-747.
Lu, X.; Mao, Q.; Gilliam, F.S.; Luo, Y. and Mo, J. 2014. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 20(12):3790-3801.
Mengel, K. and Kirkby, E.A. 2001. Principles of plant nutrition. 5ta Edición. Kluwer Academic Publishers, Dordrecht, Países Bajos. 849p.
Ott, R.L. and Longnecker, M.T. 2016. An introduction to statistical methods and data analysis. 7ma Edición. Cengage Learning, Boston, Massachusetts, EEUU. 1174 p.
Pérez-Esteban, J.; Escolástico, C.; Moliner, A.; Masaguer, A. and Ruiz-Fernández, J. 2014a. Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments. Plant and Soil, 377(1-2):97-109.
Pérez-Esteban, J.; Escolástico, C.; Masaguer, A.; Vargas, C. and Moliner, A. 2014b. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils. Chemosphere, 103:164-171.
Ross, D.S.; David, M.B.; Lawrence, G.B. and Bartlett, R.J. 1996. Exchangeable hydrogen explains the pH of Spodosol Oa horizons. Soil Science Society of America Journal, 60(6):1926-1932.
Shi, L.; Zhang, H.; Liu, T.; Zhang, W.; Shao, Y.; Ha, D.; Li, Y.; Zhang, C.; Cai, X.; Rao, X.; Lin, Y.; Zhou, L.; Zhao, P.; Ye, Q.; Zou, X. and Fu, S. 2016. Consistent effects of canopy vs. understory nitrogen addition on the soil exchangeable cations and microbial community in two contrasting forests. Science of the Total Environment, 553:349-357.
Shuman, L.M. and Duncan, R.R. 1990. Soil exchangeable cations and aluminum measured by ammonium chloride, potassium chloride, and ammonium acetate. Communications in Soil Science and Plant Analysis, 21(13-16):1217-1228.
Sims, J.T. 1996. Lime requirement. En: Sparks, D.L. (Comp.). Methods of soil analysis. Part 3. Chemical methods. 3ra Edición. Soil Science Society of America Book Series No. 5. Soil Science Society of America, Madison, Wisconsin, EEUU. 491-515p.
Stevens, C.J.; Dise, N.B. and Gowing, D.J. 2009. Regional trends in soil acidification and exchangeable metal concentrations in relation to acid deposition rates. Environmental Pollution, 157(1):313-319.
Thomas, G.W. 1996. Soil pH and soil acidity. En: Sparks, D.L. (Comp.). Methods of soil analysis. Part 3. Chemical methods. 3ra Edición. Soil Science Society of America Book Series No. 5. Soil Science Society of America, Madison, Wisconsin, EEUU. 475-490p.
Tomasic, M.; Zgorelec, Z.; Jurisic, A. and Kisic, I. 2013. Cation exchange capacity of dominant soil types in the Republic of Croatia. Journal of Central European Agriculture, 14(3): 84-98.
van der Heijden, G.; Legout, A.; Pollier, B.; Mareschal, L.; Turpault, M.-P.; Ranger, J.and Dambrine, E. 2013. Assessing Mg and Ca depletion from broadleaf forest soils and potential causes. A case study in the Morvan Mountains. Forest Ecology and Management, 293:65-78.
Yitbarek, T.; Gebrekidan, H.; Kibret, K. and Beyene, S. 2013. Impacts of land use on selected physicochemical properties of soils of Abobo area, western Ethiopia. Agriculture, Forestry and Fisheries, 2(5):177-183.