OCEAN-ATMOSPHERIC MACRO-SCALE PATTERN ASSOCIATED WITH EXTREME DROUGHTS IN THE SOUTHERN HIGHLANDS OF PERU
DOI:
https://doi.org/10.21704/rea.v21i1.1875Keywords:
meteorological droughts, oceanic-atmospheric patterns, teleconnections, southern highlands of PeruAbstract
In this research, the macroscale ocean-atmospheric mechanisms associated with extreme meteorological droughts during the austral summer (january-march) in the southern highlands of Peru (SSP) were studied. For this, the standardized precipitation anomaly was calculated based on information from conventional weather stations of SENAMHI, atmospheric climate information from ERA5 and oceanic information of sea surface temperature from ERSST in the period 1980 - 2019. The extremely dry events in the SSP were identified in the summers of the years 1983, 1990 and 1992 with a deficit or more than 46% of the normal average, where the oceanic-atmospheric pattern is associated with an anomalous increase of SST in the central-eastern Pacific Ocean of up to +3 °C, favoring the intensification of westerly winds in the lower troposphere (850 hPa) and the establishment of a dipole of two anticyclonic circulations over the central equatorial Pacific at 200 hPa, while, over the medium levels (500 hPa) the presence of a ridge configured over the SSP was observed. In the same way, the modification of the structure of the Walker circulation generated a subsident branch over the Amazon basin and the tropical Atlantic Ocean, while the Hadley circulation presented a descendent structure between 20° S - 40° S, ten degrees further north of its climatic position.
Downloads
References
Chanda K. & Maity R. 2015. Meteorological drought quantification with standardized precipitation anomaly index for the regions with strongly seasonal and periodic precipitation. Journal of Hydrologic Engineering, 20(12): 06015007. DOI: 10.1061/(ASCE)HE.1943-5584.0001236.
Coelho C.A.S., Prestrelo C., Ambrizzi T., Simões M., Bertoletti C., Pereira J.L., Nóbile A.C., Pampuch L.A., de Souza M., Mosso L.M., Da Rocha R.P. & Rehbein A. 2016. The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Climate Dynamics, 46: 3737-3752. DOI: 10.1007/s00382-015-2800-1.
Feng L., Tim L. & Weidong Y. 2014. Cause of severe droughts in Southwest China during 1951–2010. Climate Dynamics, 43: 2033-2042. DOI: 10.1007/s00382-013-2026-z.
Garreaud R. & Aceituno P. 2001. Internnual Rainfall Variability over the South American Altiplano. Journal of Climate, 14(12): 2779-2789. https://doi.org/10.1175/1520-0442(2001)014%3C2779:IRVOTS%3E2.0.CO;2.
Garreaud R. 2000. Intraseasonal variability of moisture and rainfall over the South American Altiplano. Monthly Weather Review, 128(9): 3337-3346. https://doi.org/10.1175/1520-0493(2000)128<3337:IVOMAR>2.0.CO;2.
Garreaud R., Vuille M. & Clement A. 2003. The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 194(1-3): 5-22. https://doi.org/10.1016/S0031-0182(03)00269-4.
Gill A.E. 1980. Some simple solutions for heat induced tropical circulation. Q.J.R. Meteorol. Soc., 106(449): 447-462. https://doi.org/10.1002/qj.49710644905.
Huang B., Thorne P.W., Banzon V.F., Boyer T., Chepurin G., Lawrimore J.H., Menne M.J., Smith T.M., Vose R.S. & Zhang H.M. 2017. NOAA Extended Reconstructed Sea Surface Temperature (ERSST), Version 5. NOAA - National Centers for Environmental Information. DOI: 10.7289/V5T72FNM.
INDECI. 2014. Boletín Estadístico Virtual de la Gestión Reactiva del INDECI. Número 01 – Año 1, | DIC. INDECI (Instituto Nacional de Defensa Civil). Perú. https://www.indeci.gob.pe/wp-content/uploads/2019/01/201708041005051.pdf.
IRI. 2022. Tutorial de estadísticas en climatología y anomalías estandarizadas. IRI (International Research Institute / Columbia Climate School / Columbia University). Consultado el 29 de mayo de 2022 de: http://iridl.ldeo.columbia.edu/dochelp/StatTutorial/Climatologies/index.html#Comp.
Junker N.W., Grumm R.H., Hart R., Bosart L.F., Bell K.M. & Pereira F.J. 2008. Use of Normalized Anomaly Fields to Anticipate Extreme Rainfall in the Mountains of Northern California. Weather and Forecasting, 23(3): 336-356. https://doi.org/10.1175/2007WAF2007013.1.
MINAM. 2011. La desertificación en el Perú: Cuarta Comunicación Nacional del Perú a la Convención de Lucha contra la Desertificación y la Sequía.
Primera edición: junio 2011. Fondo Editorial del MINAM (Ministerio del Ambiente). Perú. https://repositoriodigital.minam.gob.pe/handle/123456789/200?show=full.
McPhaden M.J. 2002. El Niño and La Niña: Causes and Global Consequences. In: Encyclopedia of Global Environmental Change, Vol 1. 353-370. John Wiley and Sons, LTD. Chichester, UK.
SENAMHI. 2019. Caracterización espacio temporal de la equía en los departamentos altoandinos del Perú (1981-2018). SENAMHI (Servicio Nacional de Meteorología e Hidrología). Perú. https://www.senamhi.gob.pe/load/file/01401SENA-78.pdf.
Takahashi K., Montecinos A., Goubanova K. & Dewitte B. 2011. ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophysical Research Letters, 38(10): L10704. DOI: 10.1029/2011GL047364
Vuille M. 1999. Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the Southern Oscillation. Int. J. Climatol., 19(14): 1579–600. https://doi.org/10.1002/(SICI)1097-0088(19991130)19:14<1579::AID-JOC441>3.0.CO;2-N.
Vuille M. & Keimig F. 2004. Interannual Variability of Summertime Convective Cloudiness and Precipitation in the Central Andes Derived from ISCCP-B3 Data. Journal of Climate, 17(17): 3334-3348. https://doi.org/10.1175/1520-0442(2004)017<3334:IVOSCC>2.0.CO;2.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Sheylla Sulca, Victoria Calle , Delia Acuña
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.