GROWTH KINETICS OF ACIDOPHILIC MICROBIAL CONSORTIA IN SUBMERGED CULTURE FOR BIOLEACHING AGENTS
DOI:
https://doi.org/10.21704/rea.v23i1.2169Keywords:
microbial consortium, bioleaching, specific growth rate, medium 9K, microbial inoculumAbstract
The study on the bioleaching of metals from minerals is a necessity to improve the process of recovering precious metals and obtaining greater benefits. The objective was to determine in four successive reactivations, the specific growth rate and stability of microbial consortia obtained from the leaching plant of the mining company Southern Cooper Corporation (SCC) in Toquepala, Tacna
- Peru. The consortia M-1, M-2, M-5, M-6, and BF-7 were obtained from chalcopyrite from the leach heaps; and the PLS-3, PLS-4, and ILS-8 of the leached liquid solutions. The liquid culture medium used was modified to 9K. The consortia had four successive reactivations in 9K medium, in triplicate, at room temperature for 15 days and with 1vvm aeration. The microbial counts obtained every eight hours in the Petroff-Hausser counting chamber were converted to the decimal logarithmic scale to obtain the growth kinetics using the Malthusian model that determined the rate constant K in the logarithmic phase and the Gompertz model to the microbial growth curve. The consortia from solid samples and biofilm had a faster adaptation, compared to those from the liquid samples of PLS and ILS, which showed an inactive microbial concentration at the beginning. All consortia after the first reactivation showed higher growth rates, the highest being in the PLS-4 consortium during the third reactivation, with a K of 0.025 h-1. The most stable growth rates occurred in the fourth reactivation in the M-6 and BF-7 consortia, these were the most indicated to continue with application studies as inoculum after a third reactivation and achieve the optimization of the bioleaching process of the mineral chalcopyrite.
Downloads
References
Amar A., Castro C., Bernardelli C., Costa C.S. & Donati E. 2021. Influence of UVA radiation on growth, biofilm formation and bioleaching capacity of Leptospirillum ferrooxidans. Hydrometallurgy, 201: 105574. https://doi.org/10.1016/j.hydromet.2021.105574.
Amaro A.M., Chamorro D., Seeger M., Arredondo R., Peirano I. & Jerez C.A. 1991. Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. Journal of Bacteriology, 173(2): 910–915. https://doi.org/10.1128/jb.173.2.910-915.1991.
Arias A.V., Anaya M.F., Quiñones L.J., Salazar I.D., Gil R.J. & Jamanca L.G. 2013. Adaptación del Thiobacillus ferrooxidans a sustratos conformados con especies de minerales piríticos. Revista del Instituto de Investigación de la Facultad de Minas, Metalurgia y Ciencias Geográficas, 16(31): [numeración no se continua con los artículos adyancentes]. https://doi.org/10.15381/iigeo.v16i31.8339. https://revistasinvestigacion.unmsm.edu.pe/index.php/ii geo/article/view/8339.
Benzal E., Solé M., Lao C., Morral E., Gamisans X. & Dorado A.D. 2021. Influence of ore grade and mineral medium on chalcopyrite bioleaching with mixed microbial consortia. Environmental Progress & Sustainable Energy, 40(3): e13588. https://doi.org/10.1002/ep.13588.
Bobadilla-Fazzini R.A. & Poblete-Castro I. 2021. Biofilm formation is crucial for efficient Copper Bioleaching from Bornite under mesophilic conditions: Unveiling the lifestyle and catalytic role of Sulfur-Oxidizing Bacteria. Frontier in Microbiology, 12: 761997. https://doi.org/10.3389/fmicb.2021.761997.
Braddock J.F., Luong H.V. & Brown E.J. 1984. Growth kinetics of Thiobacillus ferrooxidans isolated from arsenic mine drainage. Applied and Environmental Microbiology, 48(1): 48–55. https://doi.org/10.1128/aem.48.1.48-55.1984.
Castillo D., Castellanos R. & Tirado E. 2021. Acción biooxidativa de cultivos microbianos biolixiviantes sobre la arsenopirita. Ciencia & Desarrollo, 20(1): 57-69. https://doi.org/10.33326/26176033.2021.1.1108.
Castro L., Blázquez M.L. & Muñoz J.A. 2021. Leaching/Bioleaching and Recovery of Metals. Metals, 11(11): 1732. https://doi.org/10.3390/met11111732.
Coll F., Giannuzzi L., Noia, M. & Zaritzky N. 2001. Un modelado matemático: una herramienta útil para la industria alimenticia. Ciencia Veterinaria, 3(1): 22-28. https://repo.unlpam.edu.ar/handle/unlpam/4271. https://repo.unlpam.edu.ar/handle/unlpam/4233.
Coroller L., Guerrot V., Huchet V., Le Marc Y., Mafart P., Sohier D. & Thuault D. 2005. Modelling the influence of single acid and mixture on bacterial growth. International Journal Food Microbiology, 100(1–3): 167–178. https://doi.org/10.1016/j.ijfoodmicro.2004.10.014.
Delgado S. & Castillo D. 2019. Influencia de la temperatura en el crecimiento de un consorcio microbiano y su capacidad biooxidativa sobre el hierro de la calcopirita. Ecología Aplicada, 18(1): 85-90. http://dx.doi.org/10.21704/rea.v18i1.1310.
Domínguez-Ordóñez M., Miranda-Romero L., Martínez- Hernández P.A., Huerta-Bravo M. & Castillo-López E. 2019. Evaluación de métodos nutricionales para reactivar inóculo ruminal preservado analizado a través de cinética de fermentación y digestibilidad de forrajes in vitro. Rev. Mex. Cienc. Pecu., 10(2): 315-334. https://doi.org/10.22319/rmcp.v10i2.4483.
Eyzaguirre P. & Castillo D. 2019. Biolixiviación indicativa del sulfato de cobre por crecimiento microbiano ante el drenaje minero. Revista de Investigaciones Altoandinas, 21(1): 49-56. http://dx.doi.org/10.18271/ria.2019.444.
Feng S., Yang H. & Wang W. 2015. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching. Bioresource Technology, 191: 37–44. https://doi.org/10.1016/j.biortech.2015.04.122.
Govender E., Bryan C.G. & Harrison S.T.L. 2015. Effect of physico-chemical and operating conditions on the growth and activity of Acidithiobacillus ferrooxidans in a simulated heap bioleaching environment. Minerals Engineering, 75:14–25. http://dx.doi.org/10.1016/j.mineng.2015.02.006.
Haghshenas D.F., Alamdari E.K., Torkmahalleh M.A., Bonakdarpour B. & Nasernejad B. 2009. Adaptation of Acidithiobacillus ferrooxidans to high grade sphalerite concentrate. Minerals Engineering, 22(15): 1299–1306. http://dx.doi.org/10.1016/j.mineng.2009.07.011.
Harrison J.J., Ceri H. & Turner R.J. 2007. Multimetal resistance and tolerance in microbial biofilms. Nature Reviews Microbiology, 5(12): 928–938. https://doi.org/10.1038/nrmicro1774.
Hedrich S., Joulian C., Graupner T., Schippers A. & Guézennec A.G. 2018. Enhanced chalcopyrite dissolution in stirred tank reactors by temperature increase during bioleaching. Hydrometallurgy, 179: 125–131. https://doi.org/10.1016/j.hydromet.2018.05.018.
Jin S., Liu Y., Sun C., Wei X., Li H. & Han Z. 2018. A Study of the environmental factors influencing the growth phases of Ulva prolifera in the southern Yellow Sea, China. Marine Pollution Bulletin, 135: 1016–1025. https://doi.org/10.1016/j.marpolbul.2018.08.035.
Johnson D.B., Bacelar-Nicolau P., Okibe N., Thomas A. & Hallberg K.B. 2009. Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix termotolerans gen. nov., sp. nov.: Heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria. International Journal of Systematic Evolutionary Microbiology, 59(5): 1082–1089. https://doi.org/10.1099/ijs.0.65409-0.
Joulian C., Fonti V., Chapron S., Bryan C.G. & Guezennec A.G. 2020. Bioleaching of pyritic coal wastes: bioprospecting and efficiency of selected consortia. Research in Microbiology, 171(7): 260–270. https://doi.org/10.1016/j.resmic.2020.08.002.
Kim T.W., Kim C.J., Chang Y.K., Ryu H.W. & Cho K.S. 2002. Development of an optimal medium for continuous ferrous iron oxidation by immovilized Acidothiobacillus ferrooxidans cells. Biotechnology Progress, 18(4): 752-759. https://doi.org/10.1021/bp020289j.
Koukou I., Mejlholm O. & Dalgaard P. 2021. Cardinal parameter growth and growth boundary model for non- proteolytic Clostridium botulinum – Effect of eight environmental factors. International Journal of Food Microbiology, 346: 109162. https://doi.org/10.1016/j.ijfoodmicro.2021.109162.
Leathen W.W., Kinsel N.A. & Braley S. 1956. Ferrobacillus ferrooxidans: A chemosynthetic autotrophic bacterium. Journal of Bacteriology, 72(5): 700-704.
https://doi.org/10.1128/jb.72.5.700-704.1956.
Liu R., Chen J., Zhou W., Cheng H., & Zhou H. 2019. Insight to the early-stage adsorption mechanism of moderately thermophilic consortia and intensified bioleaching of chalcopyrite. Biochemical Engineering Journal, 144, 40–47. https://doi.org/10.1016/j.bej.2019.01.009.
Ma L., Huang S., Wu P., Xiong J., Wang H., Liao H. & Liu X. 2021. The interaction of acidophiles driving community functional responses to the re-inoculated chalcopyrite bioleaching process. Science of the Total Environmental, 798: 149186. https://doi.org/10.1016/j.scitotenv.2021.149186.
Madigan M., Martinko J., Bender K., Buckley D. & Stahl D. 2015. Brock Biología de los microorganismos 14.a Edición. Pearson. España.
Magaña H.A. & Villareal T.A. 2006. The effect of environmental factors on the growth rate of Karenia brevis (Davis) G. Hansen and Moestrup. Harmful Algae, 5(2): 192–198. https://doi.org/10.1016/j.hal.2005.07.003. Malthus T.R. 1926. First essay on population (1798). Macmillan, London. https://archive.org/details/b31355250/page/n3/mode/2up.urn:oclc:record:1155448083.
Melchor M. 2015. Modelización mediante difusiones no homogéneas tipo Gompertz. Tesis Doctoral. Universidad de Granada. España. https://digibug.ugr.es/bitstream/handle/10481/40667/249 55334.pdfsequence=1&isAllowed=y.
MINEM. 2021. Anuario minero 2021. MINEM (Ministerio de Energía y Minas). Lima, Perú. https://www.minem.gob.pe/minem/archivos/file/Mineria
/PUBLICACIONES/ANUARIOS/2021/AM2021.pdf.
Miyamoto-Shinohara Y., Sukenobe J., Imaizumi T. & Nakahara T. 2008. Survival of freeze-dried bacteria. J. Gen. Appl. Microbiol, 54(1): 9–24. https://doi.org/10.2323/jgam.54.9.
Muñoz A., Márquez M.A., Montoya O.I., Ruíz O. & Lemehsko V. 2003. Evaluación de oxidación bacteriana de sulfuros con Acidithiobacillus ferrooxidans mediante pruebas de FTIR y difracción de rayos X. Revista Colombiana de Biotecnología, 5(1): 73–81. https://revistas.unal.edu.co/index.php/biotecnologia/article/view/594.
Okibe N., Gericke M., Hallberg K.B. & Johnson D.B. 2003. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Applied and Environmental Microbiology, 69(4): 1936-1943. https://doi.org/10.1128/AEM.69.4.1936-1943.2003.
Ospina J.D., Mejía E., Osorno L., Márquez M.A. & Morales A.L. 2012. Biooxidación de concentrados de arsenopirita por Acidithiobacillus ferrooxidans en erlenmeyer agitados. Revista Colombiana de Biotecnología, 14(1):135–145. https://revistas.unal.edu.co/index.php/biotecnologia/issu e/view/2963.
Parra E., Gordillo W. & Pinzón W. J. 2019. Modelos de Crecimiento Poblacional: Enseñanza-Aprendizaje desde las Ecuaciones Recursivas. Formación universitaria, 12(1): 25–34. https://doi.org/10.4067/S071850062019000100025.
Saavedra A. & Corton E. 2014. Biotecnología microbiana aplicada a la minería. Revista Química Viva, 13(3): 18-32. URI:http://www.quimicaviva.qb.fcen.uba.ar/v13n3/saavedra. pdf.
Saavedra A. 2019. Efecto de la producción de EPS inducida por galactosa sobre la oxidación de ion ferroso por Acidithiobacillus ferrooxidans. Tesis para optar el grado de Magíster en Ciencias de la Ingenieria mencion en Ingenieria Bioquímica. Pontificia Universidad Católica de Valparaíso. Chile. ResearchGate. DOI: 10.13140/RG.2.2.22075.36641.
Tupikina O.V., Minnaar S.H., Rautenbach G.F., Dew D.W. & Harrison S.T.L. 2014. Effect of inoculum size on the rates of whole ore colonisation of mesophilic, moderate thermophilic and thermophilic acidophiles. Hydrometallurgy, 149: 244-251. https://doi.org/10.1016/j.hydromet.2013.10.010.
Wang Y., Zeng W., Qiu G., Chen X. & Zhou H. 2014. A Moderately Thermophilic Mixed Microbial Culture for Bioleaching of Chalcopyrite Concentrate at High Pulp Density. Applied and Environmental Microbiology, 80(2): 741–750. https://doi.org/10.1128/AEM.02907-13.
Watling H.R., Johnson J.J., Shiers D.W., Gibson J.A.E., Nichols P.D., Franzmann P.D. & Plumb J.J. 2016. Effect of temperature and inoculation strategy on Cu recovery and microbial activity in column bioleaching. Hydrometallurgy, 164: 189–201. https://doi.org/10.1016/j.hydromet.2016.05.017.
Xia L., Liu X., Zeng J., Yin C., Gao J., Liu J. & Qiu G. 2008. Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite. Hydrometallurgy, 92(3–4): 95–101. https://doi.org/10.1016/j.hydromet.2008.01.002.
You J., Solongo S.K., Gomez-Flores A., Choi S., Zhao H., Urík M., Ilyas S. & Kim H. 2020. Intensified bioleaching of chalcopyrite concentrate using adapted mesophilic culture in continuous stirred tank reactors. Bioresource Technology, 307: 123181. https://doi.org/10.1016/j.biortech.2020.123181.
Zárate E. 2015. Determinación de los parámetros cinéticos del crecimiento de Thiobacillus thiooxidans en sustrato hidrófobo de azufre. Informe Final de Investigación. Repositorio Institucional. Universidad Nacional del Callao. http://hdl.handle.net/20 500.12952/1107. https://repositorio.unac.edu.pe/handle/20 500.12952/1107.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Daladier Castillo-Cotrina, Virginia Chipana-Laura, Claudia Clavijo-Koc, Roberto Castellanos-Cabrera
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.