FEEDING BEHAVIOR OF Apocyclops spartinus (COPEPODA: CYCLOPOIDA) ON Pavlova lutheri (HAPTOPHYTA) IN LABORATORY CONDITIONS

Authors

  • Pedro Pablo Alonso Sánchez-Dávila Instituto del Mar del Perú (IMARPE) \ Dirección General de Investigación en Acuicultura \ Área Funcional de Investigaciones en Acuicultura \ Banco de Germoplasma de Organismos Acuáticos. Esquina Gamarra y Gral. Valle s/n, Callao, 07021, Perú. https://orcid.org/0000-0002-9913-9832
  • Jorge Flores-Valiente Universidad Peruana Cayetano Heredia (UPCH). Av. Honorio Delgado 430, Lima, Perú. https://orcid.org/0000-0002-0587-3818
  • Patricia Gil-Kodaka Universidad Nacional Agraria La Molina (UNALM) \ Facultad de Pesquería. Av. La Molina s/n - La Molina, Lima, Perú. https://orcid.org/0000-0002-8448-7893

DOI:

https://doi.org/10.21704/rea.v23i2.2216

Keywords:

culture, clearance rate, ingestion rate, mandible edge index, mathematical models

Abstract

The copepod Apocyclops spartinus's predatory behavior was described on naupliar and adult stages (males and females) in function of its mandibular border under laboratory conditions. To describe this, filtration and ingestion rates on microalgae Pavlova lutheri were estimated in three copepod ontogenetic phases: 1) nauplii (i-iii), 2) metanauplii (iv-vi) and 3) adults (males and females) between 3 to 30 hours of consumption in five intervals, at 24 °C and 35 PSU (Practical Salinity Units). Ingestion rate was higher in females (60.7%) than in males (36.1%), metanauplii (2.5%) and nauplii (0.6%). Highest filtration rate was recorded by the metanauplii (52.3%), followed by the females (24.2%), males (12%) and nauplii (11.5%). The potential and exponential models described the relationship between ingestion/hours and filtration/hours, those recorded parameters as negative superindexes, explaining higher dietary demand by adults over naupliary stages and depicted an asymptote for established balance between copepod satiety and food rejection due to the loss of nutritional value. In summary, Itoh's mandibular edge index classified A. spartinus within the carnivorous spectrum; however, its feeding behavior, which relies on mobile microalgae, demonstrated an active ambush predatory strategy rather than passive foraging.

Downloads

Download data is not yet available.

References

Abu-Rezq T.S., Yule A.B. & Teng S.K. 1997. Ingestion, fecundity, growth rates and culture of the harpacticoid copepod, Tisbe furcata, in the laboratory. Hydrobiologia, 347: 109–118. https://doi.org/10.1023/A:1003071318933.

Ahmed F., Zhou W. & Schenk P.M. 2015. Pavlova lutheri is a high-level producer of phytosterols. Algal Research, 10: 210–217. https://doi.org/10.1016/j.algal.2015.05.013.

Allan J.D., Richman S., Heinle D.R. & Huff R. 1977. Grazing in juvenile stages of some estuarine calanoid copepods. Marine Biology, 43: 317–331. https://doi.org/10.1007/BF00396926.

Andersen R.A. 2005. Algal Culturing Techniques. 1st Edition. Academic Press. Elsevier. 1–578.

Båmstedt U., Gifford D.J., Irigoien X., Atkinson A. & Roman M. 2000. Feeding. In: Harris R.P., Wiebe P.H., Lenz J., Skjoldal H.R. & Huntley M. (Eds.). ICES Zooplankton Methodology Manual. 1st Edition. Academic Press. Elsevier. 297–399. https://doi.org/10.1016/B978-0-12- 327645-2.X5000-2.

Beaumont A.R., Turner G., Wood A.R. & Skibinski D.O.F. 2004. Hybridisations between Mytilus edulis and Mytilus galloprovincialis and performance of pure species and hybrid veliger larvae at different temperatures. Journal of Experimental Marine Biology and Ecology, 302(2): 177– 188. https://doi.org/10.1016/j.jembe.2003.10.009.

Berggreen U., Hansen B. & Kiørboe T. 1988. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: Implications for determination of copepod production. Marine Biology, 99(3): 341–352. https://doi.org/10.1007/BF02112126.

Besiktepe S. & Dam H.G. 2020. Effect of diet on the coupling of ingestion and egg production in the ubiquitous copepod, Acartia tonsa. Progress in Oceanography, 186: 102346. https://doi.org/10.1016/j.pocean.2020.102346.

Betouhim-El T. & Kahan D. 1972. Tisbe pori n. sp. (Copepoda: Harpacticoida) from the Mediterranean coast of Israel and its cultivation in the laboratory. Marine Biology, 16: 201–209. https://doi.org/10.1007/BF00346942.

Bircher L. & Ruber E. 1988. Toxicity of methoprene to all stages of the salt marsh copepod, Apocyclops spartinus (Cyclopoida). Journal of the American Mosquito Control Association, 4(4): 520–523. https://pubmed.ncbi.nlm.nih.gov/3225571/.

Brito D., Milani N. & Pereira G. 2006. Tasa de filtración e ingestión de Simocephalus vetulus (MÜLLER, 1776) (CRUSTACEA: CLADOCERA) alimentado con Selenastrum capricornutum (Printz, 1914) y Chlorella vulgaris Beijerinck, 1890. Interciencia, 31(10): 753–757. https://www.redalyc.org/articulo.oa?id=33912110.

Brown M.R. 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 145(1): 79– 99. https://doi.org/10.1016/0022-0981(91)90007-J.

Bruno E., Andersen-Borg C.M. & Kiørboe T. 2012. Prey Detection and Prey Capture in Copepod Nauplii. PLOS ONE, 7(10): e47906. https://doi.org/10.1371/journal.pone.0047906.

Cano R., Ráudez S. & Hooker E. 2004. The Natural Diet of Apocyclops panamensis at a Shrimp Farm on the Pacific Coast of Nicaragua. Zoological Studies, 43(2): 344–349. https://repositorio.unan.edu.ni/2467/1/621.pdf.

Chen M., Kim D., Liu H. & Kang C-K. 2018. Variability in copepod trophic levels and feeding selectivity based on stable isotope analysis in Gwangyang Bay of the southern coast of the Korean Peninsula. Biogeosciences, 15: 2055– 2073. https://doi.org/10.5194/bg-15-2055-2018.

Coelho-Botelho M.J. 1999. Revisão do gênero Apocyclops Lindberg, 1942 (Copepoda: Cyclopoida). Tese à obtenção do título de Doutor em Ciências na Área de Zoologia. Universidad de São Paulo. Brasil. https://www.researchgate.net/publication/34009714_Re visao_do_genero_Apocyclops_Lindberg_1942_Copepo da_Cyclopoida.

Conover R.J. & Huntley M.E. 1980. General rules of grazing in pelagic ecosystems. In: Falkowsky P.G. (Ed.) Primary Productivity in the Sea. 19: 461–484. Springer US. https://doi.org/10.1007/978-1-4684-3890-1.

Czaika S.C. 1982. Identification of nauplii N1-N6 and copepodids CI-CVI of the great lakes Calanoid and Cyclopoid copepods (Calanoida, Cyclopoida, Copepoda). Journal of Great Lakes Research, 8(3): 439– 469. https://doi.org/10.1016/S0380-1330(82)71985-9.

Elías-Gutiérrez M., Suárez-Morales E., Gutiérrez-Aguirre M.A., Silva-Briano M., Granados-Ramírez J.G. & Garfias-Espejo T. 2008. Cladócera y Copépoda de las aguas continentales de México. Guía ilustrada. Universidad Nacional Autónoma de México & Facultad de Estudios Superiores Iztacala & El Colegio de la Frontera Sur & Comisión Nacional para el Conocimiento y Uso de la Biodiversidad & Consejo Nacional de Ciencia y Tecnología & Secretaría de Medio Ambiente y Recursos Naturales. México. https://biblioteca.ecosur.mx/bib/46952.

Fábregas J., Otero A., Domínguez A. & Patiño M. 2001. Growth rate of the microalga Tetraselmis suecica changes the biochemical composition of Artemia species. Marine Biotechnology, 3: 256–263. https://doi.org/10.1007/s101260000074.

Farhadian O., Yusoff F. Md. & Mohamed S. 2008. Nutritional values of Apocyclops dengizicus (Copepoda: Cyclopoida) fed Chaetocerous calcitrans and Tetraselmis tetrathele. Aquaculture Research, 40(1): 74–82. https://doi.org/10.1111/j.1365- 2109.2008.02066.x.

Frost B.W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnology and Oceanography, 17(6): 805–815. https://doi.org/10.4319/lo.1972.17.6.0805.

Ganga R.S., Anandan R., Korath A. & Joseph A. 2021. Alterations in Body Fatty acid Composition in Microalga, Pavlova lutheri, grown in different standard Culture Media. Fishery Technology, 58: 113–121. https://epubs.icar.org.in/index.php/FT/article/view/1154 26

Giesecke R. & González H.E. 2004. Mandible characteristics and allometric relations in copepods: A reliable method to estimate prey size and composition from mandible occurrence in predator guts. Revista Chilena de Historia Natural, 77(4): 607–616. http://dx.doi.org/10.4067/S0716-078X2004000400004.

Gonçalves A., Azeiteiro U., Pardal M. & De Troch M. 2012. Fatty acid profiling reveals seasonal and spatial shifts in zooplankton diet in a temperate estuary. Estuarine, Coastal and Shelf Science, 109: 70–80. https://doi.org/10.1016/j.ecss.2012.05.020.

Gonçalves R.J. & Kiørboe T. 2015. Perceiving the algae: How feeding-current feeding copepods detect their nonmotile prey. Limnology and Oceanography, 60(4): 1286-1297. https://doi.org/10.1002/lno.10102.

Harvey H.W. 1937. Note on Selective Feeding by Calanus. Journal of the Marine Biological Association of the United Kingdom, 22(1): 97–100. https://doi.org/10.1017/S0025315400011899.

Harvey T.H.P. & Butterfield N.J. 2022. A new species of early Cambrian arthropod reconstructed from exceptionally preserved mandibles and associated small carbonaceous fossils (SCFs). Papers on Palaeontology, 8(4): e1458. https://doi.org/10.1002/spp2.1458.

Helenius LK & Saiz E. 2017. Feeding behaviour of the nauplii of the marine calanoid copepod Paracartia grani Sars: Functional response, prey size spectrum, and effects of the presence of alternative prey. PLoS One, 12(3). https://doi.org/10.1371/journal.pone.0172902.

Im D.-H., Wi J.H. & Suh H.-L. 2015. Evidence for ontogenetic feeding strategies in four calanoid copepods in the East Sea (Japan Sea) in summer, revealed by stable isotope analysis. Ocean Science Journal, 50: 481–490. https://doi.org/10.1007/s12601-015-0044-y.

Itoh K. 1970. A consideration on feeding habits of planktonic copepods in relation to the structure of their oral parts. Bulletin of Plankton Society of Japan, 17: 1–10. http://www.plankton.jp/index_e.html.

Jepsen P.M., van Someren Gréve H., Jørgensen K.N., Kjær K.G.W. & Hansen B.W. 2021. Evaluation of high-density tank cultivation of the live-feed cyclopoid copepod Apocyclops royi (Lindberg 1940). Aquaculture, 533: 736125. https://doi.org/10.1016/j.aquaculture.2020.736125.

Larsen P.S. & Riisgård H.U. 2022. Size-Specific Growth of Filter-Feeding Marine Invertebrates. Journal of Marine Science and Engineering, 10(9): 2–11. https://doi.org/10.3390/jmse10091226

Mauchline J., Blaxter J., Southward A. & Tyler P. 1998. The Biology of Calanoid Copepods. Advances in Marine Biology book series. Volume 33. 1st Edition. Elsevier. https://www.sciencedirect.com/bookseries/advances-in marine-biology/vol/33/suppl/C.

Meireles L.A., Guedes A.C. & Malcata F.X. 2003. Lipid class composition of the microalga Pavlova lutheri: Eicosapentaenoic and docosahexaenoic acids. Journal of Agricultural and Food Chemistry, 51(8): 2237–2241. https://doi.org/10.1021/jf025952y.

Michels J. & Gorb S.N. 2015. Mandibular gnathobases of marine planktonic copepods - feeding tools with complex micro- and nanoscale composite architectures. Beilstein Journal of Nanotechnology, 6(1): 674–685. https://doi.org/10.3762/bjnano.6.68.

Michels J. & Schnack-Schiel S.B. 2005. Feeding in dominant Antarctic copepods—does the morphology of the mandibular gnathobases relate to diet? Marine Biology, 146: 483–495. https://doi.org/10.1007/s00227-004-1452- 1.

Miracle M.R. 2015. Orden Cyclopoida. Manual. Revista IDE@ - SEA, 95: 1–19. http://sea entomologia.org/IDE@/revista_95.pdf.

Mullin M.M., Fuglister E. & Fuglister F.J. 1975. Ingestion by planktonic grazers as a function of concentration of food [Note]. Limnology and Oceanography, 20(2): 259–262. https://doi.org/10.4319/lo.1975.20.2.0259.

Paffenhöfer G.-A., Strickler J.R., Lewis K.D. & Richman S. 1996. Motion behavior of nauplii and early copepodid stages of marine planktonic copepods. Journal of Plankton Research, 18(9): 1699–1715. https://doi.org/10.1093/plankt/18.9.1699.

Perga M.E., Syarki M., Spangenberg J.E., Frossard V., Lyautey E., Kalinkina N. & Bouffard D. 2020. Fasting or feeding: A planktonic food web under lake ice. Freshwater Biology. 66(3): 570–581. https://doi.org/10.1111/fwb.13661

Phelps R.P., Sumiarsa G.S, Lipman E.E., Lan H.-P., Moss K. & Davis A.D. 2005. Intensive and Extensive Production Techniques to Provide Copepod Nauplii for Feeding Larval Red Snapper Lutjanus Campechanus (Chapter 12). In: Lee C-S., O'Bryen P.J. & Marcus N.H. (Eds.), Copepods in Aquaculture. 151–168. Blackwell Publishing. https://doi.org/10.1002/9780470277522.ch12.

Ramlee A., Chembaruthy M., Gunaseelan H., Yatim S.R.M., Taufek H. & Rasdi N.W. 2021. Enhancement of nutritional value on zooplankton by alteration of algal media composition: A review. IOP Conference Series: Earth and Environmental Science. 869: 012006. https://doi.org/10.1088/1755-1315/869/1/012006.

Ruber E. 1968. Description of a salt marsh copepod Cyclops (Apocyclops) spartinus n. sp. and a comparison with closely related species. Transactions of the American Microscopical Society, 87(3): 368–375. https://doi.org/10.2307/3224824.

Saiz E. & Kiørboe T. 1995. Predatory and suspension feeding of the copepod Acartia tonsa in turbulent environments. Marine Ecology Progress Series, 122: 147–158. https://doi.org/10.3354/meps122147.

Sautour B. & Castel J. 1993. Feeding behaviour of the coastal copepod Euterpina acutifrons on small particles. Cahiers de Biologie Marine, 34: 239–251. https://www.vliz.be/imisdocs/publications/287003.pdf.

Sługocki Ł. 2020. Variability of mandible shape in the freshwater glacial relict Eurytemora lacustris (Poppe, 1887) (Copepoda, Calanoida, Temoridae). Crustaceana, 93(3-5): 337–353. https://doi.org/10.1163/15685403- 00003985

Stoecke D.K. & Egloff D.A. 1987. Predation by Acartia tonsa Dana on planktonic ciliates and rotifers. Journal of Experimental Marine Biology and Ecology, 110(1): 53– 68. https://doi.org/10.1016/0022-0981(87)90066-9.

Strickler J.R. 1982. Calanoid copepods, feeding currents, and the role of gravity. Science, 218(4568): 158–160. https://doi.org/10.1126/science.218.4568.158.

Tedeschi L.O. 2006. Review Assessment of the adequacy of mathematical models. Agricultural Systems, 89(2-3): 225–247. https://doi.org/10.1016/j.agsy.2005.11.004.

Titelman J. & Kiørboe T. 2003. Motility of copepod nauplii and implications for food encounter. Marine Ecology Progress Series, 247: 123–135. https://doi.org/10.3354/meps247123.

Van Someren Gréve H., Almeda R., Lindegren M. & Kiørboe T. 2017. Gender-specific feeding rates in planktonic copepods with different feeding behavior. Journal of Plankton Research, 39(4): 631–644. https://doi.org/10.1093/plankt/fbx033. Velásquez A., Rosas J., Cabrera T., Millán J. & Hernández M. 2001. Efecto de Tetraselmis chuii, Nannochloris oculata y Dunaliella salina sobre el crecimiento poblacional de Apocyclops distans (Copepoda, Cyclopoidae) en diferentes condiciones de temperatura e iluminación. Revista de Biología Marina y Oceanografía, 36(2): 189–197. http://dx.doi.org/10.4067/S0718- 19572001000200007.

Wilson D.S. 1973. Food size selection among copepods. Ecology, 54(4): 909–914. https://doi.org/10.2307/1935688.

Wong C.K. 1988. Effects of competitors, predators, and prey on the grazing behavior of herbivorous calanoid copepods. Bulletin of Marine Science, 43(3): 573–582. https://www.ingentaconnect.com/contentone/umrsmas/b ullmar/1988/00000043/00000003/art00019

Downloads

Published

2025-01-06

Issue

Section

Artículos originales

How to Cite

Sánchez-Dávila, P. P. A. ., Flores-Valiente, J. ., & Gil-Kodaka, P. (2025). FEEDING BEHAVIOR OF Apocyclops spartinus (COPEPODA: CYCLOPOIDA) ON Pavlova lutheri (HAPTOPHYTA) IN LABORATORY CONDITIONS. Ecología Aplicada, 23(2), 113-124. https://doi.org/10.21704/rea.v23i2.2216

Similar Articles

1-10 of 22

You may also start an advanced similarity search for this article.