PHYSICOCHEMICAL AND MICROBIOLOGICAL CHARACTERIZATION OF WWTP AND DT SLUDGE UNDER AGRONOMIC RE-USE APPROACH

Authors

DOI:

https://doi.org/10.21704/rea.v23i2.2219

Keywords:

sewage sludge, faecal sludge, agronomical potential

Abstract

The objective of the study was to evaluate the agronomic potential of WWTP and DT sludge produced in Peru. For this, different aerobic and anaerobic wastewater treatment technologies were selected, as well as on-site sanitation systems in the cities of Lima, Ayacucho, Arequipa and Cusco. The aerobic technologies evaluated were: conventional aeration activated sludge, extended aeration, ICEAS and aerated lagoon. Regarding the anaerobic technologies, the following were selected: anaerobic lagoon, anaerobic digester and Imhoff tank. The on-site sanitation systems chosen were those with weekly, monthly and annual storage chambers. The sampled sludge was characterized physicochemically and microbiologically according to DS-N°015-2017-VIVIENDA, which determines whether a sludge can be reused and classified as type A or B biosolids. Type A biosolids are applicable to the soil without sanitary restrictions. while those of type B have restrictions depending on the location of the soil and/or type of crop. The concentrations of C, N, P and K in the sludge were analyzed to evaluate their possible agronomic reuse. It was found that extended aeration sludge, aerated lagoon, anaerobic lagoon, anaerobic digester and Imhoff tank have characteristics similar to those of type B biosolids and have adequate agronomic potential due to their content of organic matter and nutrients. On the other hand, conventional aeration sludge, ICEAS and BES require stabilization processes to be reused.

Downloads

Download data is not yet available.

References

Ahmed I., Ofori-Amanfo D., Awuah E. & Cobbold F. 2019. A Comprehensive Study on the Physicochemical Characteristics of Faecal Sludge in Greater Accra Region and Analysis of Its Potential Use as Feedstock for Green Energy. Journal of Renewable Energy, 2019: 8696058. DOI: 10.1155/2019/8696058.

Aleisa E., Alsulaili A. & Almuzaini Y. 2021. Recirculating Treated Sewage Sludge for Agricultural Use: Life Cycle Assessment for a Circular Economy. Waste Management, 135: 79-89. DOI: 10.1016/j.wasman.2021.08.035.

Alvarenga P., Mourinha C., Farto M., Santos T., Palma P., Sengo J., Morais M.-C. & Cunha-Queda C. 2015. Sewage Sludge, Compost and Other Representative Organic Wastes as Agricultural Soil Amendments: Benefits Versus Limiting Factors. Waste Management, 40: 44– 52. DOI: 10.1016/j.wasman.2015.01.027.

Andreoli C.V., Pegorini E.S., Fernandes F. & dos Santos H.F. 2007. Land application of sewage sludge (8). En: Andreoli C.V., von Sperling M. & Fernandes F. (Eds.). Sludge treatment and disposal, Volume 6: 162-206. Biological Wastewater Treatment Series. IWA Publishing. London, UK. DOI: 10.2166/9781780402130.

An-Nori A., El Fels L., Ezzariai A., El Hayani B., El Mejahed K., El Gharous M. & Hafidi M. 2021. Effectiveness of helminth egg reduction by solar drying and liming of sewage sludge. Environmental Science and Pollution Research, 28(11): 14080-14091. DOI: 10.1007/s11356- 020-11619-w.

APHA (American Public Health Association), AWWA (American Water Works Association) & WEF (Water Environment Federation). 1999. Standard Methods for the Examination of Water and Wastewater. 20th edition. Washington, D.C. https://www.standardmethods.org/doi/book/10.2105/SM WW.2882. https://bit.ly/rEA-UNALM-26. ASTM International. 2016.

ASTM D5373-16: Standard Test Methods for Determination of Carbon, Hydrogen, and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. Revisión 2016. West Conshohocken, Pennsylvania. DOI: 10.1520/D5373-16.

Banerjee M.R., Burton D.L. & Depoe S. 1997. Impact of sewage sludge application on soil biological characteristics. Agriculture, Ecosystems & Environment, 66(3): 241–249. DOI: 10.1016/s0167-8809(97)00129-1.

Barrios J.A., Jiménez B.E. & Maya C. 2004. Treatment of Sludge with Peracetic Acid to Reduce the Microbial Content. Journal of Residuals Science and Technology, 1(1): 69-74. https://www.researchgate.net/publication/312378615_Tr eatment_of_sludge_with_Peracetic_acid_to_reduce_the _microbial_content.

Benetti A.D. & Peláez M.L. 2008. Panorama de la utilización de aguas residuales, aguas grises y lodos en la agricultura, acuicultura, industrias y edificaciones en el Brasil. REGA: Revista de Gestão del Água de América Latina, 5(1): 13-24. https://www.abrhidro.org.br/SGCv3/publicacao.php?PU B=2&ID=71&SUMARIO=853. https://lume.ufrgs.br/bitstream/handle/10183/241538/00 0723232.pdf?sequence=1&isAllowed=y.

Campos M.C., Beltrán M., Fuentes N. & Moreno G. 2018. Huevos de helmintos como indicadores de contaminación de origen fecal en aguas de riego Agrícola, biosólidos, suelos y pastos. Biomédica, 38(1): 42-53. DOI: 10.7705/biomedica.v38i0.3352.

Cheunbarn T. & Pagilla K. 2000. Anaerobic Thermophilic/Mesophilic Dual-Stage Sludge Treatment. Journal of Environmental Engineering, 126(9): 796-801. DOI: 10.1061/(ASCE)0733-9372(2000)126:9(796).

Da Silva S.M.C.P., Fernandes F., Soccol V.T. & Morita D.M. 2007. Main Contaminants in Sludge. En: Andreoli C.V., von Sperling M. & Fernandes F. (Eds) Sludge treatment and disposal. Volume 6. 31-47. Biological Treatment Series. IWA Publishing. London, UK. DOI: 10.2166/9781780402130.

Du W., Jiang J. & Gong C. 2012. Primary Research on Agricultural Effect of Sludge–Impact of Sludge Application on Crop Seeds Germination and Seedling Growth. Procedia Environmental Sciences, 16: 340–345. DOI: 10.1016/j.proenv.2012.10.048.

El Fels L., Zamama M., El Asli A. & Hafidi M. 2014. Assessment of biotransformation of organic matter during co-composting of sewage sludge-lignocelullosic waste by chemical, FTIR analyses, and phytotoxicity tests. International Biodeterioration & Biodegradation, 87: 128–137. DOI: 10.1016/j.ibiod.2013.09.024.

EPA (U.S. Environmental Protection Agency). 2007. Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. Revision 1. Washington, D.C. https://www.epa.gov/sites/default/files/2015- 12/documents/3051a.pdf.

EPA (U.S. Environmental Protection Agency). 2014. Method 6020B (SW-846 Update V): Inductively Coupled Plasma-Mass Spectrometry. Revision 2. Washington, D.C. https://www.epa.gov/sites/default/files/2015- 12/documents/6020b.pdf. Espinoza J. 2022. Innovación en la gestión de lodos generados en plantas de tratamiento de aguas residuales de origen doméstico en Lima-Perú. Tesis doctoral para obtener el grado académico de Doctor en Gestión de Empresas. Universidad Nacional Mayor de San Marcos (UNMSM). https://hdl.handle.net/20.500.12672/18947.

Fijalkowski K., Rorat A., Grobelak A. & Kacprzak M.J. 2017. The presence of contaminations in sewage sludge – The current situation. Journal of Environmental Management, 203(3): 1126–1136. DOI: 10.1016/j.jenvman.2017.05.068.

Fonts I., Azuara M., Gea G. & Murillo M.B. 2009. Study of the Pyrolysis Liquids Obtained From Different Sewage Sludge. Journal of Analytical and Applied Pyrolysis, 85(1-2): 184–191. DOI: 10.1016/j.jaap.2008.11.003.

Fuentes A., Lloréns M., Sáez J., Aguilar M.I., Pérez-Marín A.B., Ortuño J.F. & Meseguer V.F. 2006. Ecotoxicity, Phytotoxicity and Extractability of Heavy Metals from Different Stabilised Sewage Sludges. Environmental Pollution, 143(2): 355–360. DOI: 10.1016/j.envpol.2005.11.035.

Gantzer C., Gaspard P., Galvez L., Huyard A., Dumouthier N. & Schwartzbrod J. 2001. Monitoring of bacterial and parasitological contamination during various treatment of sludge. Water Research, 35(16): 3763-3770. DOI: 10.1016/s0043-1354(01)00105-1.

Gonçalves R.F., Luduvice M. & von Sperling M. 2007. Sludge thickening and dewatering. En: Andreoli C.V., von Sperling M. & Fernandes F. (Eds). Sludge treatment and disposal. Volume 6. 76-119. Biological Wastewater Treatment Series. IWA Publishing. London, UK. DOI: 10.2166/9781780402130.

Iglesias-Jimenez E. & Alvarez C.E. 1993. Apparent availability of nitrogen in composted municipal refuse. Biology and Fertility of Soils, 16(4): 313-318. DOI: 10.1007/BF00369312.

Jones V., Gardner M. & Ellor B. 2014. Concentrations of trace substances in sewage sludge from 28 wastewater treatment works in the UK. Chemosphere, 111: 478-484. DOI: 10.1016/j.chemosphere.2014.04.025.

Latare A.M., Kumar O., Singh S.K. & Gupta A. 2014. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice–wheat system. Ecological Engineering, 69: 17-24. 0925-8574. DOI: 10.1016/j.ecoleng.2014.03.066.

Liu, H.-t. 2016. Achilles heel of environmental risk from recycling of sludge to soil as amendment: A summary in recent ten years (2007–2016). Waste Management, 56: 575–583. DOI: 10.1016/j.wasman.2016.05.028.

López de Romaña D., Castillo C. & Diazgranados D. 2010. El zinc en la salud humana – I. Revista Chilena de Nutrición, 37(2): 234-239. DOI: 10.4067/S0717- 75182010000200013.

Luduvice M. 2007. Sludge stabilisation. En: Andreoli C. V., Von Sperling M. & Fernandes F. (Eds.). Sludge treatment and disposal. Volume 6: 48-67. Biological Wastewater Treatment Series. IWA Publishing. London, UK. DOI: 10.2166/9781780402130.

Mannina G., Barbara L., Cosenza A. & Wang Z. 2023. Treatment and Disposal of Sewage Sludge from Wastewater in a Circular Economy Perspective (Chapter 2). En: Mannina G., Pandey A. & Sirohi R. Current Developments in Biotechnology and Bioengineering. 11- 30. DOI: 10.1016/B978-0-323-99920-5.00011-1.

Manrique K. 2013. Aplicación de sulfato de zinc en el cultivo de papa: posibilidad de mayor productividad y rentabilidad. Agro Enfoque, 28(188): 30-35. http://repebis.upch.edu.pe/articulos/agro_enfoque/v28n1 88/a3.pdf.

Melo W., Delarica D., Guedes A., Lavezzo L., Donha R., de Araújo A., de Melo G. & Macedo F. 2018. Ten years of application of sewage sludge on tropical soil. A balance sheet on agricultural crops and environmental quality. Science of The Total Environment, 643: 1493–1501. DOI: 10.1016/j.scitotenv.2018.06.254.

Mendes M., Gama G. E. & Fernandes J. 2011. Características químicas de lodos de esgotos produzidos no Brasil. Revista AIDIS de Ingeniería y Ciencias Ambientales: Investigación, desarrollo y práctica, 4(2): 35–47. https://www.revistas.unam.mx/index.php/aidis/article/vi ew/4.

Naqvi S., Tariq R., Hameed Z., Ali I., Taqvi S., Naqvi M., Niazi M.B.K., Noor T & Farooq W. 2018. Pyrolysis of high-ash sewage sludge: Thermo-kinetic study using TGA and artificial neural networks. Fuel, 233: 529–538. DOI: 10.1016/j.fuel.2018.06.089.

Nascimento A.L., de Souza A.J., Oliveira F.C., Coscione A.R., Viana D.G. & Regitano J.B. 2020. Chemical attributes of sewage sludges: Relationships to sources and treatments, and implications for sludge usage in agriculture. Journal of Cleaner Production, 258: 120746. DOI: 10.1016/j.jclepro.2020.120746.

Natividad M., Sarasa J., López A., Gómez J., Mosteo R., & Ormad M. P. 2020. Study of Evolution of Microbiological Properties in Sewage Sludge-Amended Soils: A Pilot Experience. International journal of environmental research and public health, 17(18): 6696. 1660-4601. DOI: https://doi.org/10.3390/ijerph17186696.

Niwagaba C.B. 2009. Treatment Technologies for Human faeces and Urine. Doctoral Thesis Swedish University of Agricultural Sciences (SLU: Sveriges lantbruksuniversitet). Published in Acta Universitatis Agriculturae Sueciae. https://res.slu.se/id/publ/27019.

Niwagaba C., Mbéguéré M. & Strande L. 2014. Faecal Sludge Quantification, Characterisation and Treatment Objectives (Chapter 2). En: Strande L., Ronteltap M. & Brdjanovic D. (Eds.). Faecal Sludge Management: Systems Approach for Implementation and Operation. 19-44. IWA Publishing. Londres, Reino Unido. https://www.eawag.ch/fileadmin/Domain1/Abteilungen/ sandec/publikationen/EWM/Book/FSM_Book_LowRes. pdf.

Pérez M.T., Baeza F., Garcés P., Galao O. & Payá J. 2013. Uso potencial de ceniza de lodo de depuradora como sustitución de árido fino en bloques de hormigón prefabricados. DYNA, 80(179): 142-150. https://revistas.unal.edu.co/index.php/dyna/article/view/ 36270/40659. http://www.scielo.org.co/scielo.php?pid=S0012- 73532013000300016&script=sci_arttext.

Pinto M. 2007. Pathogen removal from sludge. En: Andreoli C.V., von Sperling M. & Fernandes F. (Eds) Sludge treatment and disposal. Volume 6. 120-148. Biological Wastewater Series. IWA Publishing. London, UK. DOI: 10.2166/9781780402130

Ramírez G. & Pozo F. 2015. Manual de Agua Potable, Alcantarillado y Saneamiento. Operación y mantenimiento de plantas de tratamiento de aguas residuales municipales: Lagunas aireadas. SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) & CONAGUA (Comisión Nacional del Agua). México. https://files.conagua.gob.mx/conagua/mapas/SGAPDS-1-15-Libro48.pdf.

Rípodas A., Fernández D. & Macho M. 2017. Investigación de Escherichia Coli productor de toxinas Shiga (STEC) en carnes y derivados cárnicos. Sanidad Militar, 73(3): 147-152. https://publicaciones.defensa.gob.es/media/downloadabl e/files/links/r/s/rsm73-3_1.pdf.

Roig N., Sierra J., Nadal M., Martí E., Navalón-Madrigal P., Schuhmacher M. & Domingo J. L. 2012a. Relationship Between Pollutant Content and Ecotoxicity of Sewage Sludges from Spanish Wastewater Treatment Plants. Science of The Total Environment, 425: 99–109. 0048- 9697. DOI: 10.1016/j.scitotenv.2012.03.018.

Roig N., Sierra J., Martí E., Nadal M., Schuhmacher M. & Domingo J.L. 2012b. Long-term Amendment of Spanish Soils With Sewage Sludge: Effects on soil functioning. Agriculture, Ecosystems & Enviroment, 158: 41-48. DOI: 10.1016/j.agee.2012.05.016.

Rojas O. & Cabirol N. 2000. Remoción de indicadores patógenos y parásitos (coliformes fecales y huevos de helminto) en lodos municipales de tipo biológico por digestión anaerobia mesofílica y termofílica. En: Foresti E., Lemos C. A., Takayuki M., Florencio L. & Santos E. (Eds) VI Taller y Seminario Latinoamericano de Digestión Anaerobia. 5-9 de noviembre de 2000. Universidad Federal de Pernambuco. Editorial Universitaria de UFPE. Pernambuco, Brasil.

Rubio C., González D., Martín-Izquierdo R.E., Revert C., Rodríguez I. & Hardisson A. 2007. El zinc: oligoelemento esencial. Nutrición Hospitalaria, 22(1): 101-107. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid= S0212-16112007000100012. https://www.redalyc.org/articulo.oa?id=309226714012.

Santos D., Teshima E., Furiam D., Araújo R. & Rodrigues da Silva C. 2017. Efeito da secagem em leito nas características físico-químicas e microbiológicas de lodo de reator anaeróbio de fluxo ascendente usado no tratamento de esgoto sanitário. Engenharia Sanitária e Ambiental, 22(2): 341-349. DOI: 10.1590/S1413- 41522016100531.

Samal K., Moulick S., Mohapatra B.G., Samanta S., Sasidharan S., Prakash B. & Sarangi S. 2022. Design of Faecal Sludge Treatment Plant (FSTP) and availability of its Treatment Technologies. Energy Nexus, 7: 100091. DOI: 10.1016/j.nexus.2022.100091.

SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). 2003. Norma Oficial Mexicana NOM-004- SEMARNAT-2002. Protección ambiental.- Lodos y biosólidos.-Especificaciones y límites máximos permisibles de contaminantes para su aprovechamiento y disposición final. SEGOB Diario oficial de la Federación. DOF: 15/08/2003. México. https://dof.gob.mx/nota_detalle.php?codigo=691939&fe cha=15/08/2003#gsc.tab=0.

Semiyaga S., Okure M.A.E., Niwagaba C.B., Nyenje P.M. & Kansiime F. 2017. Dewaterability of faecal sludge and its implications on faecal sludge management in urban slums. International Journal of Environmental Science and Technology, 14(1): 151-164. DOI: 10.1007/s13762- 016-1134-9.

Silva C., Saldanha J. & Rosa M. J. 2016. Performance indicators and indices of sludge management in urban wastewater treatment plants. Journal of Environmental Management, 184-2: 307–317. DOI: 10.1016/j.jenvman.2016.09.056.

Singh R.P. & Agrawal M. 2008. Potential benefits and risks of land application of sewage sludge. Waste Management, 28(2): 347-358. DOI: 10.1016/j.wasman.2006.12.010.

Strande L. 2014. The Global Situation. En: Strande L., Ronteltap M. & Brdjanovic D. (Eds). Faecal Sludge Management: Systems Approach for Implementation and Operation. 1-14. First published. IWA Publishing. London, UK. DOI: 10.2166/9781780404738.

SUNASS. 2022. Diagnóstico de las Plantas de Tratamiento de Aguas Residuales en el Ámbito de Operaciones de las Empresas Prestadoras. Primera edición. https://www.sunass.gob.pe/wp-content/uploads/2022/06/Informe-de-diagnostico-de-la-Plantas-de-Tratamiento-de-Aguas-Residuales-PTAR_VdigitalConcomentario.pdf. Torres P. 2012. Perspectivas del tratamiento anaerobio de aguas residuales domésticas en países en desarrollo. Revista EIA (Escuela de Ingeniería de Antioquía), 9(18): 115-129. https://revistas.eia.edu.co/index.php/reveia/article/view/ 264. https://www.redalyc.org/articulo.oa?id=149225098009.

Torres P., Madera C.A. & Martínez G.V. 2008. Estabilización alcalina de biosólidos compostados de plantas de tratamiento de aguas residuales domésticas para aprovechamiento agrícola. Revista Facultad Nacional de Agronomía – Medellín, 61(1): 4432-4444. https://www.redalyc.org/articulo.oa?id=179914077019.

Uggetti E., Ferrer I., Nielsen S., Arias C., Brix H. & García J. 2012. Characteristics of biosolids from sludge treatment wetlands for agricultural reuse. Ecological Engineering, 40: 210-216. 0925-8574. DOI: 10.1016/j.ecoleng.2011.12.030.

Van Oorschot R., de Waal D. & Semple L. 2000. Options for Beneficial Reuse of Biosolids in Victoria. Water Science & Technology, 41(8): 115–122. DOI: 10.2166/wst.2000.0150. Vilakazi S., Onyari E., Nkwonta O. & Bwapwa J.K. 2023. Reuse of domestic sewage sludge to achieve a zero waste strategy & mprove concrete strength & durability - A review. South African Journal of Chemical Engineering, 43: 122–127. DOI: 10.1016/j.sajce.2022.10.012.

VIVIENDA. 2017. DECRETO SUPREMO Nº 015-2017- VIVIENDA Decreto Supremo que aprueba el Reglamento para el Reaprovechamiento de los Lodos generados en las Plantas de Tratamiento de Aguas Residuales. El Peruano, 34(14117): 32-40. Jueves 22 de junio de 2017. https://nike.vivienda.gob.pe/dgaa/Archivos/DS-015- 2017-VIVIENDA-norma%20legales.pdf. https://busquedas.elperuano.pe/cuadernillo/NL/2017062

VIVIENDA. 2018. RESOLUCIÓN MINISTERIAL Nº 093- 2018-VIVIENDA Aprueban el Protocolo de Monitoreo de Biosólidos. El Peruano, 35(14438): 25-25. Miércoles 14 de marzo de 2018. https://nike.vivienda.gob.pe/dgaa/Archivos/RM-093- 2018-VIVIENDA.pdf. https://busquedas.elperuano.pe/dispositivo/NL/1625694- 1. https://busquedas.elperuano.pe/cuadernillo/NL/2018031 4.

VIVIENDA. 2024. Registro Nacional de Productores y Comercializadores de Biosólidos. Vivienda (Ministerio de Vivienda, Construcción y Saneamiento) / Perú. Consultado en Setiembre 2024 de: https://nike.vivienda.gob.pe/sica/MODULOS/STabREN APROB.aspx.

Von Sperling M. & Andreoli C.V. 2007. Introduction to Sludge Management. En: Andreoli C. V., von Sperling M. & Fernandes F. (Eds.). Sludge treatment and disposal. Volume 6. 1-3. Biological Wastewater Treatment Series. IWA Publishing. London, UK. DOI: 10.2166/9781780402130.

Von Sperling M. & Gonçalves R. 2007. Sludge characteristics and production. En: Andreoli C. V., Von Sperling M. & Fernandes F. (Eds.). Sludge treatment and disposal. Volume 6. 4-30. Biological Wastewater Series. IWA Publishing. London, UK. DOI: 10.2166/9781780402130.

Wang Q., Wei W., Gong Y., Yu Q., Li Q., Sun J. & Yuan Z. 2017. Technologies for reducing sludge production in wastewater treatment plants: State of the art. Science of The Total Environment, 587-588: 510–521. DOI: 10.1016/j.scitotenv.2017.02.203. Wang X., Chen T., Ge Y. & Jia Y. 2008. Studies on Land Application of Sewage Sludge and its Limiting Factors. Journal of Hazardous Materials, 160(2-3): 554–558. DOI: 10.1016/j.jhazmat.2008.03.046.

Warman P.R. & Termeer W.C. 2005. Evaluation of Sewage Sludge, Septic Waste and Sludge Compost Applications to Corn and Forage: Ca, Mg, S, Fe, Mn, Cu, Zn and B Content of Crops and Soils. Bioresource Technology, 96(9): 1029–1038. DOI: 10.1016/j.biortech.2004.09.014.

Werle S. & Wilk R.K. 2010. A Review of Methods for the Thermal Utilization of Sewage Sludge: The Polish Perspective. Renewable Energy, 35(9): 1914–1919. DOI: 10.1016/j.renene.2010.01.019.

Yakamercan E., Ari A. & Aygün A. 2021. Land application of municipal sewage sludge: Human health risk assessment of heavy metals. Journal of Cleaner Production, 319: 128568. DOI: 10.1016/j.jclepro.2021.128568.

Zhang Z., Le Velly M., Rhind S.M., Kyle C. E., Hough R.L., Duff E.I. & McKenzie C. 2015. A Study on Temporal Trends and Estimates of Fate of Bisphenol a in Agricultural Soils After Sewage Sludge Amendment. Science of the Total Environment, 515-516: 1–11. DOI: 10.1016/j.scitotenv.2015.01.053.

Zieliński M., Kazimierowicz J. & Dębowski M. 2023. Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations. Energies, 16(1): 83. DOI: 10.3390/en16010083.

Downloads

Published

2025-01-06

Issue

Section

Artículos originales

How to Cite

Candela Levano, G. M. ., Miglio Toledo, R., Vela Cardich, R. ., & Cadillo La Torre, E. A. . (2025). PHYSICOCHEMICAL AND MICROBIOLOGICAL CHARACTERIZATION OF WWTP AND DT SLUDGE UNDER AGRONOMIC RE-USE APPROACH. Ecología Aplicada, 23(2), 151-164. https://doi.org/10.21704/rea.v23i2.2219

Similar Articles

You may also start an advanced similarity search for this article.