Economic and environmental benefits of certified rice seed (Oryza sativa) on the northern coast and northern jungle of Peru

Authors

  • Ramón Diez Matallana Círculo de Investigación en Economía Agrícola, Universidad Nacional Agraria La Molina, Lima, Perú.
  • Carlos Minaya Gutiérrez Círculo de Investigación en Economía Agrícola, Universidad Nacional Agraria La Molina, Lima, Perú.
  • Carolay Vásquez Quispe Círculo de Investigación en Economía Agrícola, Universidad Nacional Agraria La Molina, Lima, Perú.
  • Nicole Barrientos Ortiz Círculo de Investigación en Economía Agrícola, Universidad Nacional Agraria La Molina, Lima, Perú.
  • Andrea Duárez Ruiz Círculo de Investigación en Economía Agrícola, Universidad Nacional Agraria La Molina, Lima, Perú.
  • María Cusi Osccorima Círculo de Investigación en Economía Agrícola, Universidad Nacional Agraria La Molina, Lima, Perú.
  • Santiago Velarde Swayne Círculo de Investigación en Economía Agrícola, Universidad Nacional Agraria La Molina, Lima, Perú.

DOI:

https://doi.org/10.21704/ne.v7i1.2111

Keywords:

Rice, partial budget, economic surplus, environmental impact, impact assessment

Abstract

Rice (Oryza sativa) stands as a grain nourishing over half of the global populace, ranking as the third most cultivated grain worldwide, following corn and wheat. In Peru, 70 thousand producers sow rice across 417 thousand hectares, yielding 3,4 million tons, with a national average yield of 8,21 tons per hectare. This production focalizes along the northern coast and northern jungle, encompassing 39,58%, covering 50% of the total agricultural rice acreage. Hence, the aim was to assess the economic and environmental benefits of expanding the usage of certified rice seed in Peru’s northern coast and northern jungle. The methodology incorporates secondary information to apply the partial budget model, economic surplus change, and variation in the environmental impact coefficient (EIQ). Findings indicate that the hypothetical adoption of certified rice seed could engender an 81,57% increase in profitability for producers, alongside an updated net social benefit of S/ 8,455 million. Furthermore, the environmental impact would also be favorable, as the EIQ of rice production would decrease by 26,06%. Consequently, it is recommended to investigate the impact of certified seed on other crucial crops for the Peruvian economy.

Downloads

Download data is not yet available.

References

Alston, J., Norton, G., & Pardey, P. (1995). Science under scarcity: Principles and practice for agricultural research evaluation and priority setting. American Journal of Alternative Agriculture, 10(4), 191 – 192. DOI: 10.1017/S0889189300006597.

Alston, J., Chan-Kang, C., Marra, M., Pardey, P., & Wyatt, TJ. (2000). A meta-analysis of rates of return to agricultural R & D: ex pede Herculem?. Research reports 113. International Food Policy Research Institute (IFPRI).

Brookes, G., & Barfoot, P. (2006). Global impact of biotech crops: socio-economic and environmental effects 1996-2004. AgbioForum, 8(3), 187 – 196. DOI: 10.4161/gmcr.20061.

Brookes, G, & Barfoot, P. (2018). Environmental impacts of

genetically modified (GM) crop use 1996-2016: Impacts on pesticide use and carbon emissions. GM Crops & Food, 9(3), 109 - 139, DOI: 10.1080/21645698.2018.1476792.

Brookes, G. (2021). Environmental Impacts of Genetically Modified (GM) Crop Use: Impacts on Pesticide Use and Carbon Emissions. En A. Ricroch et al. (Eds.), Plant Biotechnology (pp. 87 - 101). Springer, Cham. DOI: 10.1007/978-3-030-68345-0_7.

Brookes, G. (2022). Genetically Modified (GM) Crop Use 1996–2020: Environmental Impacts Associated with Pesticide Use Change. GM Crops & Food, 13(1), 262–289. DOI: 10.1080/21645698.2022.2118497.

Castillo, P. (2007). Insectos y ácaros plagas del cultivo de arroz. Universidad Nacional de Tumbes.

Cevher, C., & Altunkaynak, B. (2020). Investigation of Socio-Economic Characteristics of Wheat Producers on Certified Seed Use: The Case of Ankara ProvinceInvestigation of Socio-Economic Characteristics of Wheat Producers on Certified Seed Use: The Case of Ankara Province. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(1), 115-123.

Cedeño, J., Cedeño, G., Alcívar, J, Cargua, J., Cedeño, F., Cedeño, G., & Constante, G. (2018). Incremento del rendimiento y calidad nutricional del arroz con fertilización NPK complementada con micronutrientes. Scientia Agropecuaria, 9(4), 503 – 509. DOI: 10.17268/sci.agropecu.2018.04.05

Das, P., Adak, S., & Lahiri. A. (2020). Genetic Manipulation for Improved Nutritional Quality in Rice. Frontiers in Genetics, 11:776. DOI:10.3389/fgene.2020.00776.

Falck-Zepeda, J. (2010). Socio - Economic Impact Assessments and Biotechnology: The Experience to Date. IFPRI, New York.

Figueroa, L., Diez, R., Gómez, R., & Linares, A. (2019). Beneficios económicos de la semilla certificada en la producción de arroz (Oryza sativa) en Perú. Anales Científicos, 80(2), 437 – 451. DOI: 10.21704/ac.v80i2.1459.

Herrera, F., Velasco, C., Denen, H., & Radulovich, R. (1994). Fundamentos de análisis económico. Guía para Investigación y Extensión Rural. Centro Agronómico Tropical de Investigación y Enseñanza. CATIE. Informe Técnico N° 232. ISBN 9977-57-178-3. Costa Rica.

Horton, D. (1982). Partial budget analysis for on-farm potato research. CIP.

INIA [Instituto Nacional de Innovación Agraria]. (2017). Liberación de nueva semilla de Arroz. La Puntilla, una variedad productiva y de bajo consumo de agua, de arroz. Mejoramiento genético de arroz en INIA, Vista Florida. http://www.redagricola.com/ pe/5932-2/.

Joseph, M., Moonsammy, S., Davis, H., Warner, D., Adams, A., & Oyedotun, T. (2023). Modelling climate variabilities and global rice production: A panel regression and time series analysis. Heliyon, 9(4). DOI: 10.1016/j.heliyon.2023.e15480.

Kovach, J., Petzoldt, C., Degni, J., & Tette, J. (1992). A Method to Measure the Environmental Impact of Pesticides [eCommons]. New York’s Food and Life Sciences Bulletin. 139:1–8. https://hdl.handle.net/1813/55750.

Mahmood, A., Ghani, H.U., & Gheewala, S.H. 2023. Absolute environmental sustainability assessment of rice in Pakistan using a planetary boundary-based approach. Sustainable Production and Consumption, 39: 123 – 133. DOI: 10.1016/j.spc.2023.05.016.

Marenya, P., Erenstein, O., Prasanna,B., Makumbi, D., Jumbo, M., & Beyene, Y. (2018). Maize lethal necrosis disease: Evaluating agronomic and genetic control strategies for Ethiopia and Kenya. Agricultural Systems, 162, 220-228. DOI: 10.1016/j.agsy.2018.01.016.

Maximiliano, D., & Smyth, S. (2022). Ex-ante impact assessment of GM maize adoption in El Salvador. GM CROPS & FOOD, 11(2), 70-78. DOI: 10.1080/21645698.2019.1706424.

Maza, S., Gómez-Oscorima, R., Diez-Matallana, R., & Fernández-Northcote, E.N. (2023). Metodologías de evaluación ex - ante de los beneficios económicos de la biotecnología en el cultivo de papa en Perú. Anales Científicos, 84(1), 1 – 19. DOI: 10.21704/ac.v84i1.1363.

MIDAGRI (Ministerio de Desarrollo Agrario y Riego). (2020 a). Perú: producción, importaciones y precios del arroz. https://cdn.www.gob.pe/uploads/document/file/1230425/nota-informativa_arroz_02.pdf.

MIDAGRI (Ministerio de Desarrollo Agrario y Riego). (2020). Marco orientador de cultivos 2020 Campaña agrícola 2020 – 2021. https://repositorio.midagri.gob.pe/jspui/bitstream/20.500.13036/782/5/Marco_Orientador_de_Cultivos.pdf.

MIDAGRI (Ministerio de Desarrollo Agrario y Riego). (2022). Observatorio de commodities.https://cdn.www.gob.pe/uploads/document/file/3705028/Commodities%20Arroz%3A%20abr-jun%202022.pdf.

MIDAGRI (Ministerio de Desarrollo Agrario y Riego). (2023). Observatorio de siembras y perspectivas de producción arroz. https://cdn.www.gob.pe/uploads/document/file/5855273/4344772-observatorio-de-siembras-y-perspectivas-de-produccion-arroz.pdf?v=1712843397.

MIDAGRI (Ministerio de Desarrollo Agrario y Riego). (2024). Evaluación del avance de siembras marzo 2024. https://cdn.www.gob.pe/uploads/document/file/6049099/5355445-evaluacion-del-avance-de-siembras-marzo-2024.pdf.

Ndagi, A.H., Kolo, I.N., Yabagi, A.A., & Garba, Y. (2016). Adoption of production technologies by lowland rice farmers in lavun local government areas of Niger State, Nigeria. International Journal of Agricultural Extension, 4(1), 49-56. http://www.escijournals.net/IJAE.

Oladipo, S-U., Mukaila, R., & Adebisi, A. (2022). Analysis of rice production and the impacts of the usage of certified seeds on yield and income in Côte d’Ivoire. Journal of Agribusiness in Developing and Emerging Economies. DOI:10.1108/JADEE-04-2022-0066.

Pal, G., Roy, S., Singh, N., Singh, P. M., Yerasu, S. R., Yadava, R. B., & Behera, T. K. (2023). A study on economic impact assessment of tomato var. Kashi Aman using the economic surplus model. Vegetable Science, 50(01), 46–51. https://doi.org/10.61180/vegsci.2023.v50.i1.06.

Pereira, L. (2021). Importancia de la semilla certificada en la contención del arroz maleza. Instituto nacional de investigación agropecuaria. pp. 23-29. Editorial del INIA de Uruguay. http://www.ainfo.inia.uy/digital/bitstream/item/16138/1/st-260-2021.pdf#page=33.

Pino, S., Aguilar, H., & Cevallos, L. (2018). Evaluation benefit cost of the state program of multiplication of rice 2015-2016. Espacios, 39(16), 15 – 24. https://revistaespacios.com/a18v39n16/a18v39n16p15.pdf.

Prasetyo, T., Setiani, C., & Eti, M. (2022). Cost efficiency and farmers’ profit in using certified rice seeds and non-certified rice seeds in rainfed rice field. E3S Web of Conferences, 361:02027. DOI: 10.1051/e3sconf/202236102027.

Rodríguez Delgado, I., Pérez Iglesias, H. & Socorro Castro, A. (2018). Principales insectos plaga, invertebrados y vertebrados que atacan el cultivo del arroz en Ecuador. Revista Científica Agroecosistemas, 6(1), 95-107. https://aes.ucf.edu.cu/index.php/aes.

Rodríguez, D. (2023). Beneficios económicos, sociales y ambientales de la semilla certificada de maíz amarillo duro (Zea mays L.) en el bajo Piura [Tesis de maestría, Universidad Nacional Agraria La Molina]. Repositorio Institucional de Universidad Nacional Agraria La Molina. https://hdl.handle.net/20.500.12996/5797.

Roth, G. W., Harper, J. K., Hower, A. A., & Kyper, R. A. (2002). Potential of shorter corn/alfalfa rotations for dairy farms. Journal of Sustainable Agriculture, 20(2), 41–52. https://doi.org/10.1300/j064v20n02_06.

Ruane, J. (2014). Background document to the FAO e-mail conference on “Approaches and methodologies in ex post impact assessment of agricultural research: Experiences, lessons learned and perspectives”. FAO Research and Extension Unit. Rome. Italy. Disponible en http://www.fao.org/3/as549e/as549e.pdf.

Seixas, R., Silveira, J. & Ferrari, V. (2022). Assessing environmental impact of genetically modified seeds in Brazilian agriculture. Frontiers in Bioengineering and Biotechnology, 10:977793. DOI: 10.3389/fbioe.2022.977793.

Soha, M. (2014). The partial budget analysis for sorghum farm in Sinai Peninsula, Egypt. Annals of Agricultural Sciences, 59(1), 77–81. DOI: 10.1016/j.aoas.2014.06.011

Tankam, C., & Djimeu, E. W. (2020). Organic farming for local markets in Kenya: Contribution of conversion and certification to environmental benefits. Canadian Journal of Agricultural Economics/Revue canadienne d’agroeconomie, 68(1), 83-105.

USDA (United States Department of Agriculture). (2022). Grain Corridor Agreement Offers Potential for More Ukraine. Grain: World Markets and Trade. Foreign Agricultural Service. grain.pdf (cornell.edu)

Vásquez, C. (2022). Rentabilidad ex-ante de la liberación de maíz amarillo duro (Zea mays) genéticamente modificado en la Costa Norte del Perú [Tesis de pregrado, Universidad Nacional Agraria La Molina]. Repositorio Institucional UNALM. https://hdl.handle.net/20.500.12996/5492

Published

2022-06-30

Issue

Section

Artículo original / Research Article

How to Cite

Diez Matallana, R. ., Minaya Gutiérrez, C., Vásquez Quispe, C., Barrientos Ortiz, N., Duárez Ruiz, A., Cusi Osccorima, M., & Velarde Swayne, S. (2022). Economic and environmental benefits of certified rice seed (Oryza sativa) on the northern coast and northern jungle of Peru. Natura@economía, 7(1), 63-80. https://doi.org/10.21704/ne.v7i1.2111

Most read articles by the same author(s)