EFECTOS DE LOS REGÍMENES DE RIEGO SOBRE EL RENDIMIENTO Y EL USO DEL AGUA DEL CALABACÍN (Cucurbita pepo L.) EN CONDICIONES DE CAMPO

Autores/as

  • José Alexander Gil-Marín Departamento de Ingeniería Agrícola, Núcleo Monagas, Universidad de Oriente, Estado Monagas, Venezuela.
  • María Ximena Cordova-Rodriguez Facultad de la Salud Humana, Universidad Nacional de Loja, Ecuador.
  • Nelson Montaño-Mata Departamento de Ingeniería Agrícola, Núcleo Monagas, Universidad de Oriente, Estado Monagas, Venezuela.

DOI:

https://doi.org/10.21704/ac.v82i2.1786

Palabras clave:

Eficiencia del uso del agua , rendimiento, riego por goteo , calidad del fruto

Resumen

El presente trabajo se realizó en el sector San Vicente, Municipio Maturín Estado Monagas, Venezuela entre los meses de junio-septiembre del 2015, con el objetivo de determinar el efecto de cuatro láminas de riego sobre el rendimiento, producción, la calidad de los frutos y eficiencia en el uso del agua en el cultivar Shiraz de calabacín (Cucurbita pepo L.). Se utilizó un diseño experimental de bloques al azar con tres repeticiones, con arreglo de parcelas divididas, donde la parcela principal fueron las diferentes láminas de riego. La parcela principal tuvo dimensiones de 10 m de largo por 3 m de ancho, en la misma se instalaron 4 líneas regantes separadas a 1 m. Se aplicaron cuatro criterios de riego consistentes en reponer el equivalente al 60%, 80%, 100% y 120% de la evapotranspiración del cultivo (ETc). Los parámetros medidos fueron los componentes productivos y rendimiento planta (t/ha). Un tanque evaporímetro tipo “A” se utilizó para estimar la evapotranspiración del calabacín. El tratamiento 120% ETc permitió el máximo rendimiento y calidad (en términos de frutos/planta, longitud, diámetro y peso de la fruta), y la mayor EUA. El máximo rendimiento obtenido fue de 33,39 t/ha. Todas las funciones de producción del rendimiento y de los parámetros de calidad del fruto obedecen a una ecuación matemática del tipo lineal con un alto valor de coeficiente de determinación R2 por encima del 90%. El factor de respuesta del rendimiento del cultivo de calabacín (2,35); mayor de 1 indica que este cultivo es muy susceptible al déficit de agua.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

• Adams, P. (2002). Nutritional control in hydroponics. In: Savvas, D., Passam, H.C.(Eds.), Hydroponic Production of Vegetables and Ornamentals. Embryo Publications, Athens, Greece, pp. 211-261.

• Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Requirements: Irrig. Drain. Paper No. 56. FAO, Rome, Italy.

• Al-Omran, A. M., Sheta, A.S., Falatah, A. M., & Al-Harbi, A. R. (2005). Effect of drip irrigation on squash (Cucurbita pepo) yield and water-use efficiency in sandy calcareous soils amended with clay deposits. Agric. Water Manage (73), 43–55.

• Amer, K. H. (2011). Effect of irrigation method and quantity on squash yield and quality. Agric. Water Manage. (98), 1197–1206.

• Anwar, M. R., Liu, D. L., Macadam, I., & Kelly, G. (2013). Adapting agriculture to climate change: a review. Theor. Appl. Climatol. (113), 225–245.

• Bekele, S., & Tilahum, K. (2007). Regulated deficit irrigation scheduling of onion in a semi arid region of Ethiopia. Agric. Water Manage (89), 148–152.

• Bloch, D., Hoffmann, C. M., & Marlander, B. (2006). Impact of water supply on photosynthesis, water use and carbon isotope discrimination of sugar beet genotypes. Eur. J. Agron. (24), 218-225.

• Diaz-Perez, J. C., & Eaton, T. E. (2015). Eggplant (Solanum melongena L.) plant growth and fruit yield as affected by drip irrigation rate. Hortscience .50(11), 1709–1714.

• Doorenbos, J.; & Kassam, A. H. (1979). Yield response to water. FAO Irrigation and drainage. Paper Nº 33.

• El-Dewiny, C.Y. (2011). Water and fertilizer use efficiency by squash grown under stress on sandy soil treated with acrylamide hydrogels. J. Appl. Sci. Res. (7),1828–1833.

• El-Gindy, A. G. M., El-Banna, E. S., El-Adl, M.A., & Metwally, M. F. (2009). Effect of fertilization and irrigation water levels on summer squash yield under drip irrigation. Misr Journal of Agricultural Engineering. (26), 94-106.

• El-Mageed, T. A. A., & Semida, W. M. (2015). Effect of deficit irrigation and growing seasons on plant water status, fruit yield and water use efficiency of squash under saline soil. Scientia Horticulturae. (186), 89–100.

• Ertek, A., Sensoy, S., Kucukyumuk, C., & Gedik, I. (2004). Irrigation frequency and amount affect yield components of summer squash (Cucurbita pepo L.). Agric. Water Manage. (67), 63–76.

• Ertek, A., Sensoy, S., Gedik, I., & Kücükyumuk, C. (2006). Irrigation scheduling based on pan evaporation values for cucumber (Cucumis sativus L.) grown under field conditions. Agric. Water Manage (81),159–172.

• FAO [Food and Agriculture Organization]. (2020). Superficie, producción y rendimiento de calabazas en el mundo. www.FAO. org. (Consulta: noviembre 5, 2020).

• Fernández, I., Lecina, S., Ruiz-Sánchez, M.C., Vera, J., Conejero, W., Conesa, M.R., Domínguez, A., Pardo, J.J., Léllis, B.C., & Montesinos, P. (2020). Trends and Challenges in Irrigation Scheduling in the Semi-Arid Area of Spain. Water 12 (3): 785.

• Fereres, E., & Soriano, M.A. (2007). Deficit irrigation for reducing agricultural water use. Special issue on Integrated approaches to sustain and improve plant production under drought stress. J. Exp. Bot. (58), 147–159.

• Geerts, S., & Raes, D. (2009). Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manage. (96), 1275–1284.

• Gil, J. A., Montaño, N., & Plaza, R. (2012). Efecto del riego y la cobertura del suelo sobre la productividad de dos cultivares de ají dulce. Revista Bioagro 24 (2), 43-148.

• Gil, J. A., Montaño, N., & Valderrama, J. A. (2014). Efecto de cuatro láminas de riego y dos edades de trasplante sobre el rendimiento y producción de dos cultivares de melón (Cucumis melo L.). Revista UDO-Agrícola. 14 (1), 11-21.

• He-xi, Z., Dao-cai, C., Qun, W., Jun, F., & Xiao- yu, F. (2011). Yield and quality response of cucumber to irrigation and nitrogen fertilization under subsurface drip irrigation in solar greenhouse. Agric. Sci. China. (10), 921–930.

• Hamed, M. F. (1988). Effect of Some Agricultural Practices on Growth and Yield of Rape Plants. Fac. Agric., Ain Shams Univ., Cairo, Egypt (MSc. Thesis).

• Howell, T. A., Cuenca, R. H., & Solomon, K. H. (1990). Crop yield response. In: G. J. Hoffman,

R.A. Howell and K. H. Solomon. (Eds). Management of Farm Irrigation System. ASAE Monograph, St. Joseph, Michigan, United States of America. p. 93-122.

• Igbadun, H. E., Ramalan, A. A., & Oiganji, E. (2012). Effects of regulated deficit irrigation and mulch on yield, water use and crop water productivity of onion in Samaru, Nigeria. Agric. Water Manage. (109), 162–169.

• Igbadun, H. E., Salim, B. A., Tarimo, A. K. P. R., & Mahoo, H. F. (2008). Effects of deficit irrigation scheduling on yields and soil water balance of irrigated maize. Irrig.Sci. (27), 11–23.

• Jones, H.G. (2004). What is water use efficiency? In: Bacon, M.A. (Ed.), Water Use Efficiency in Plant Biology. Blackwell Publishing, Oxford, UK, pp. 27–41.

• Karam, F., Lahoud, R., Masaad, R., Daccache, A., Mounzer, O., & Rouphael, Y. (2006). Water use and lint yield response of drip irrigated cotton to the length of irrigation season. Agric. Water Manage. (85), 287–295.

• Kirda, C. (2002). In: FAO Corp. Doc. Rep. (Ed.), Deficit Irrigation Scheduling Based on Plant Growth Stages Showing Water Stress Tolerance. Deficit Irrigation Practices, vol. 22. FAO Corp. Doc. Rep., Rome, pp. 3–10.

• Malash, N., Flowers, T. J., & Ragab, R. (2005). Effect of irrigation systems and water management practices using saline and non-saline water on tomato production. Agric. Water Manage. (78), 25–38.

• Montaño, N.J., Gil Marín, J.A., & Yeniledys, P. (2018). Rendimiento de pepino (Cucumis sativus L.) en función del tipo de bandeja y la edad de trasplante de las plántulas. Anales Científicos .79 (2), 377 - 385.

• Okasha, E., Fad, M., Hashem, A., & El-Metwally I. M. (2020). Effect of Irrigation System And Irrigation Intervals On The Water Application Efficiency, Growth, Yield, Water Productivity And Quality Of Squash Under Clay Soil Conditions. Plant Archives. 20(2): 3266-3275.

• Ozbahce, A.; & Tari, A. F. (2010). Effects of different emitter space and water stress on yield and quality of processing tomato under semi-arid climate conditions. Agric.Water Manage. (97), 1405–1410.

• Passioura, J. B.; & Angus, J. F. (2010). Improving productivity of crops in water-limited environments. – In: Sparks, D. L. (ed.). Advances in Agronomy. (106), 37-75.

• Pereira, L. S., Oweis, T., & Zairi, A. (2002). Irrigation management under water scarcity. Agric. Water Manage. (57), 175–206.

• Rolbiecki, R., Rolbiecki, S., Podsiadło. C., Wichrowska.D, Figas, A., Jagosz, B, & Wiesław Ptach. (2017). Influence of Drip Irrigation On the Yielding Of Summer Squash ‘White Bush’ Under Rainfall thermal Conditions Of Bydgoszcz And Stargard. Nr Iii/2/2017, Polish Academy of Sciences, Cracow Branch, pp. 1229–1240.

• Rouphael, Y.; & Colla, G. (2005). Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci. Hortic. (105), 177–195.

• Scholberg, J., McNeal, B. L., Jones, J. W., Boote, K.J., Stanley, C.D., & Obreza, T.A. (2000). Growth and canopy characteristics of field-grown tomato. Agron. J. (92), 152–159.

• Solomon, K. H. (1985). Tropical crop water production functions. Winter Meeting. ASCE, Chicago, Illinois, United State of America. (85), 17-20.

• Stewart, J. I., Misra, R.D., Pruitt, W.O., & Hagan, R.M. (1975). Irrigating corn and sorghum with a deficient water supply. Trans. ASAE. (18), 270– 280.

• Wajid, S. A. (1990). Effect of Different Mulching Material and Irrigation Levels on Growth and Grain Yield of Maize. Dept. Agron. Univ. Agric., Faisalabad (M Sc.Agric. Thesis).

• Wang, Z. Y., Liu, Z.X., Zhang, Z.X., Zhang, Z.K., & Liu, X. B. (2009). Subsurface drip irrigation scheduling for cucumber (Cucumis sativus L.) grown in solar greenhouse based on 20 cm standard pan evaporation in Northeast China. Sci. Hortic. (123), 51–57.

• Wetzel, J., & Stone, A. (2019). Yield Response of Winter Squash to Irrigation Regime and Planting Density. HORTSCIENCE. 54 (7), 1190–1198.

• Yavuza, D., Seymen, M., Yavuz, N., & Türkmen O. (2015). Effects of irrigation interval and quantity on the yield and quality of confectionary pumpkin grown under field conditions. Agricultural Water Management. (159), 290–298.

Descargas

Publicado

2021-12-30

Número

Sección

Artículos originales / Ciencias Agrícolas y Biológicas