Importance of soil chemical characterization of green areas using univariate statistics and Spearman correlation analysis at the Universidad Peruana Unión

Authors

  • Jhon Cesar Quispecuro-Huaman Universidad Peruana Unión, Facultad de Ingeniería y Arquitectura, Escuela Académico Profesional de Ingeniería Ambiental, Carretera Central Km 19,5 Ñaña, Chosica https://orcid.org/0000-0002-2331-979X
  • Diana Rocio Angel Rivas Universidad Peruana Unión, Facultad de Ingeniería y Arquitectura, Escuela Académico Profesional de Ingeniería Ambiental, Carretera Central Km 19,5 Ñaña, Chosica https://orcid.org/0000-0002-6291-7485
  • Milda Amparo Cruz-Huaranga Universidad Peruana Unión, Facultad de Ingeniería y Arquitectura, Escuela Académico Profesional de Ingeniería Ambiental, Carretera Central Km 19,5 Ñaña, Chosica https://orcid.org/0000-0002-1992-6650

DOI:

https://doi.org/10.21704/ac.v82i2.1763

Keywords:

green areas, available phosphorus, organic matter, pH

Abstract

The main purpose of the study was to chemically characterize the green areas of the Universidad Peruana Unión to determine the influence of the different types of water on the dynamics between receiving soil, biological support and chemical inputs. The parameters analyzed, compared and correlated from the extraction of soil samples were pH, Total Nitrogen, Organic Matter and Available Phosphorus. The univariate analysis of variance and Spearman's correlation coefficient were then used. The pH was the only significant parameter among the study areas, and high correlations were shown between Total Nitrogen, Organic Matter and Available Phosphorus. The type of irrigation water influenced the dynamic behavior of the green areas. Therefore, the study highlights to choose assertively the type of irrigation water, to manage both economic and sustainable water resources available (river water, groundwater and previously treated river water), to formulate, predict and accurately observe soil chemical dynamics and to evaluate extensive green areas of wild, forest, rural or agricultural nature in the immediate environment or integrated in the urban space according to the type of water used for irrigation.

Downloads

Download data is not yet available.

References

• Acevedo, C., Sanchez, Á., Hernández, E., & Ameéndola, R. (2011). Concentración de nitrógeno en suelo por efecto de manejo orgánico y convencional. Terra Latinoamericana, 29(3), 325–332. https://www.redalyc.org/pdf/573/57321283011.pdf

• Akroush, S., Dehehibi, B., Dessalegn, B., Al-Hadidi, O., & & Abo-Roman, M. (2016). Factors Affecting the Adoption of Water Harvesting Technologies: A Case Study of Jordanian Arid Area. Sustainable Agriculture Research, 6(1),80. https://doi.org/10.5539/sar.v6n1p80

• Amery, F., Vandecasteele, B., D’Hose, T., Nawara, S., Elsen, A., Odeurs, W., Vandendriessche, H., Arlotti, D., McGrath, S. P., Cougnon, M., & Smolders, E. (2021). Dynamics of soil phosphorus measured by ammonium lactate extraction as a function of the soil phosphorus balance and soil properties. Geoderma, 385. https://doi.org/10.1016/j.geoderma.2020.114855

• Bunkin, N. F., Glinushkin, A. P., Shkirin, A. V., Ignatenko, D. N., Chirikov, S. N., Savchenko, I. V., Meshalkin, V. P., Samarin, G. N., Maleki, A., & Kalinitchenko, V. P. (2020). Identification of Organic Matter Dispersions Based on Light Scattering Matrices Focusing on Soil Organic Matter Management. ACS Omega, 5(51), 33214–33224. https://doi.org/10.1021/acsomega.0c04906

• Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K., Niklińska, M. (2015). Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Annals of Microbiology, 65(3), 1627–1637. https://doi.org/10.1007/s13213-014-1002-0

• Cruz, M., Carbo, N., Gonzales, J. L. L., Tito, G. M., Depaz, K., Torres, S., Núñez, R., Torres, J., & Quispe, W. (2016). Tratamiento De Las Aguas De La Laguna “Mansión” Mediante La Especie Eichhorniacrassipes, Para El Riego De Áreas Verdes En La Universidad Peruana Unión. IOSR Journal of Agriculture and Veterinary Science, 09(08), 53–65. https://doi.org/10.9790/2380-0908025365

• De Oliveira, J. F., Rodrigues, F. N., Fia, R., Vilela, H. S., & Landim, D. V. (2017). Chemical properties of soil fertirrigated with dairy and slaughterhouse wastewater. Engenharia Agricola, 37(6),1244-1253

• Díaz Lezcano, M. I., Gamarra Lezcano, C. C., Ruiz Diaz, S., & Vera de Ortiz, M. (2020). Contenido de materia orgánica en suelos de sistemas silvopastoriles establecidos en el Chaco Central paraguayo. Revista de La Sociedad Científica Del Paraguay, 25(2), 131–143. https://doi.org/10.32480/rscp.2020.25.2.131

• Dingemans, M., Smeets, P., Medema, G., Frijns, J., Raat, K., van Wezel, A., & Bartholomeus, R. (2020). Responsible Water Reuse Needs an Interdisciplinary Approach to Balance Risks and Benefits. Water, 12(5), 1264. https://doi.org/10.3390/w12051264

• FAO. (2013). Reutilización del agua y agricultura: Beneficios para todos.

• Giraldo, C. (2018). Eficiencia de la especie Eichhornia Crassipes - Jacinto de Agua en el Tratamiento del Agua Residual de la Laguna “La Mansión” para el riego de las áreas verdes de la Universidad Peruana Unión, Período 2015 [Universidad Nacional Santiago Antúnez de Mayolo]. In Universidad Nacional Santiago Antúnez de Mayolo. http://repositorio.unasam.edu.pe/handle/UNASAM/4254

• Guo, W., Andersen, M. N, Qi, X., Li, P., Li, Z., Fan, X., & Zhou, Y. (2017). Effects of reclaimed water irrigation and nitrogen fertilization on the chemical properties and microbial community of soil. Journal of Integrative Agriculture, 16(3), 679–690. https://doi.org/10.1016/S2095-3119(16)61391-6

• Hassani, A., Azapagic, A., & Shokri, N. (2020). Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proceedings of the National Academy of Sciences, 117(52), 33017–33027. https://doi.org/10.1073/pnas.2013771117

• Konrad, E., & Castilhos, D. (2002). Alterações químicas do solo e crescimento do milho decorrentes da adição de lodos de curtume. Revista Brasileira de Ciência Do Solo, 26(1), 257–265. https://doi.org/10.1590/S0100-06832002000100027

• LASPAF. (2021). Metodologías empleadas en el Laboratorio de análisis de Suelos, Plantas, Aguas, y Fertilizantes de la Universidad Nacional Agraria La Molina. http://www.laspaf.com/assets/metodologia/analisis-suelos.pdf

• Lawson, J. (2015). Design and Analysis of Experiments with R CHAPMAN & HALL/CRC Texts in Statistical Science Series Series Editors Practical Multivariate Analysis, Fifth Edition Interpreting Data: A First Course in Statistics Introduction to Probability with R K. Baclawski (F. Dominici, J. J. Faraway, M. Tanner, J. Zidek, F. Abramovich, Y. Ritov, A. Afifi, S. May, V. A. Clark, D. G. Altman, A. J. B. Anderson, S. Banerjee, A. Roy, C. R. Bilder, T. M. Loughin, D. Bissell, J. K. Blitzstein, & J. Hwang (eds.)). https://doi.org/978-1-4987-2848-5

• Liu, Y., Zhang, J., & Ge, Q. (2020). The optimization of wheat yield through adaptive crop management in a changing climate: evidence from China. Journal of the Science of Food and Agriculture, jsfa.10993. https://doi.org/10.1002/jsfa.10993

• Luna, V., & Aburto, S. (2014). Sistema de humedales artificiales para el control de la eutroficación del lago del Bosque de San Juan de Aragón | Elsevier Enhanced Reader. TIP Revista Especializada En Ciencias Químico-Biológicas, 1(17), 32–55. https://reader.elsevier.com/reader/sd/pii/S1405888X14703183?token=90C0A320188AD7D0EEBE0A80EC4DA650BB08A3172905A4FAEC2618AD956DF2E30FAB584A37B0CA032225B1AC021647BE

• MINAM. (2014). Guia para el muestreo de suelos (Primera ed).

• OPS, & OMS. (2012). OPS/OMS Perú - Tratamiento Adecuado de Aguas Residuales es el gran Reto ante Crecimiento Urbano. OMS. https://www.paho.org/per/index.php?option=com_content&view=article&id=1964:tratamiento-adecuado-aguas-residuales-gran-reto-ante-crecimiento-urbano&Itemid=900

• RStudio Team. (2020). Integrated Development for R. RStudio. https://support.rstudio.com/hc/en-us/articles/206212048-Citing-RStudio

• Sánchez, D., Navarro, C., Rentería, M., Sánchez, J., Herrera, E., & Rose, J. (2019). Treated wastewater viability of use in green areas according to nitrogen compounds concentration. Water Practice and Technology, 14(2), 457–470. https://doi.org/10.2166/wpt.2019.035

• Silva, J., Torres, P., & Madera, C. (2008). Reuso de aguas residuales domésticas en agricultura. Una revisión. Agronomía Colombiana. https://www.redalyc.org/pdf/1803/180314732020.pdf

• Simonete, M. A., Kiehl, J. de C., Andrade, C. A., & Teixeira, C. F. A. (2003). Efeito do lodo de esgoto em um Argissolo e no crescimento e nutrição de milho. Pesquisa Agropecuária Brasileira, 38(10), 1187–1195. https://doi.org/10.1590/s0100-204x2003001000008

• Singh, S., Singh, J., & Pal Vig, A. (2016). Earthworm as ecological engineers to change the physico-chemical properties of soil: Soil vs vermicast. Ecological Engineering, 90,1–5. https://doi.org/10.1016/j.ecoleng.2016.01.072

• SINIA. (2012). Mapa de suelos en los distritos de Lima | SINIA | Sistema Nacional de Información Ambiental. MINAM. https://sinia.minam.gob.pe/mapas/mapa-suelos-distritos-lima

• Su, C., Zhang, F.,Cui, X., Cheng, Z., Zheng, Z. (2020). Source characterization of nitrate in groundwater using hydrogeochemical and multivariate statistical analysis in the Muling-Xingkai Plain, Northeast China. Environmental Monitoring and Assessment, 192(7):456. https://doi.org/10.1007/s10661-020-08347-6

• Toonen, W. H. J., Macklin, M. G., Dawkes, G., Durcan, J. A., Leman, M., Nikolayev, Y., & Yegorov, A. (2021). A hydromorphic reevaluation of the forgotten river civilizations of Central Asia. Proceedings of the National Academy of Sciences of the United States of America, 117(52), 32982–32988. https://doi.org/10.1073/PNAS.2009553117

• Valdes, R., Aguilera, G., Tobón, E., Samaniego, M., Díaz, J., & Hernández, C. (2019). Potential Uses of Treated Municipal Wastewater in a Semiarid Region of Mexico. Sustainability, 11(8), 2217. https://doi.org/10.3390/su11082217

• World Economic Forum. (2020). The Global Risks Report 2020 Insight Report 15th Edition. In The Global Risks Report 2020. http://www3.weforum.org/docs/WEF_Global_Risk_Report_2020.pdf

• Zamora, F., Rodríguez, N., Torres, D., & Yendis, H. (2008). Efecto del riego con aguas residuales sobre propiedades químicas de suelos de la planicie de Coro, estado Falcón. Bioagro, 20, 193–199. https://www.redalyc.org/pdf/857/85714153006.pdf

• Zhang, W. Y., Wei, Z. W., Wang, B. H., & Han, X. P. (2016). Measuring mixing patterns in complex networks by Spearman rank correlation coefficient. Physica A: Statistical Mechanics and Its Applications, 451, 440–450. https://doi.org/10.1016/j.physa.2016.01.056

• Zhang, Z., & Furman, A. (2021). Soil redox dynamics under dynamic hydrologic regimes - A review. Science of The Total Environment, 763:143026. https://doi.org/10.1016/j.scitotenv.2020.143026

• Zhou, Y., & Li, S. (2020). BP neural network modeling with sensitivity analysis on monotonicity based Spearman coefficient. Chemometrics and Intelligent Laboratory Systems, 200: 103977. https://doi.org/10.1016/j.chemolab.2020.103977

Downloads

Published

2021-12-30

Issue

Section

Original articles/ Agricultural and Biological Sciences

How to Cite

Quispecuro-Huaman, J. C., Angel Rivas, D. R., & Cruz-Huaranga, M. A. (2021). Importance of soil chemical characterization of green areas using univariate statistics and Spearman correlation analysis at the Universidad Peruana Unión. Anales Científicos, 82(2), 188-197. https://doi.org/10.21704/ac.v82i2.1763