Predicción de caudales medios mensuales del Río Huancané utilizando Modelos de Redes Neuronales
DOI:
https://doi.org/10.21704/ac.v70i2.513Abstract
Esta investigación centró sus esfuerzos en la predicción de caudales medios mensuales del río Huancané, desarrollo de modelos de redes neuronales a partir de datos de caudales, precipitación y evaporación, así como la evaluación de la capacidad de desempeño frente a modelos estocásticos. De esta manera, se desarrollaron 10 modelos de redes neuronales artificiales con distintas arquitecturas, cuyo entrenamiento se realizó con un primer grupo de datos correspondientes al periodo 1964 – 1996, y su validación con un segundo grupo de datos del periodo 1997 – 2002. Los modelos de redes neuronales artificiales mostraron comparativamente mejor desempeño en materia de predicción frente a un modelo autorregresivo periódico de primer orden PAR (1).