Yarrowia lipolytica STRAINS ISOLATED FROM HIGH ANDEAN LAGOONS OF PERU CONTAMINATED WITH MINING TAILINGS AS POTENTIAL AGENTS FOR THE BIOREMEDIATION OF HEAVY METALS

Authors

DOI:

https://doi.org/10.21704/rea.v22i1.1978

Keywords:

mining tailings, physicochemical parameters, mean lethal concentration (LC50), biosorption, Yarrowia lipolytica

Abstract

The objective of this work was to study the mean lethal concentration (LC50) and the biosorption capacity of heavy metals in isolated yeasts from Lake Junín and the Yanamate tailings facility. In both bodies of water were evaluated: pH, electrical conductivity, temperature, total dissolved solids (STD) and heavy metals by ICM-MS, according to the Environmental Quality Standards (ECA) of the Ministry of the Environment-MINAM of Peru. The physicochemical parameters evaluated in Lake Junín were higher than the maximum permissible limits (MPL) for the following metals: arsenic, cadmium, copper, chromium and lead. In the Yanamate tailings facility, the evaluated parameters were out of the LMP for type IV water ECAs: pH below 3 (acids), high electrical conductivities and high concentrations of heavy metals. From the sampled waters, yeasts were isolated in YPG medium at 10 ° C and 20 ° C. The LC50 of the Cr+6, Cu+2, Cd+2 and Hg+2 ions in Y. lipolytica AMJ3 were 0.24 mM, 1.34 mM, 0.54 mM y 7.5 0.04 mM in the order described; while the strain Y. lipolytica AMJ6 showed a LC50 of 1.06 mM, 1.42 mM, 0.49 mM y 0.05 mM in the same order. The biosorption capacity of the Cu+2 ion was 90% in the case of the AMJ3 strain, and 92% in the AMJ6 strain, at a concentration of 1.26 mM; likewise, the biosorption of the Cr+6 ion was close to 90% in both strains (AMJ3 and AMJ6) at concentrations of 0.24 mM and 0.96 mM, respectively. Nucleotide sequence analysis of AMJ3 and AMJ6 strains confirmed 100% identity in the Yarrowia lipolytica clade. These LC50 and biosorption capacity results indicate that the studied yeasts have potential in the bioremediation of water bodies and soils contaminated with heavy metals.

Downloads

Download data is not yet available.

References

Acosta I., Moctezuma-Zárate M.G., Gutiérrez C. & Rodriguez X. 2005. Bioadsorción de Cromo (VI) en Solución Acuosa por la Biomasa Celular de Cryptococcus neoformans y Helminthosporium sp. Información tecnológica, 16(1): 0718-0764. DOI:10.4067/S0718-07642005000100003.

Aduvire O., Quinteros J. & Mazadiego L. 2018. Aplicación de los índices geomecánicos en el arranque de rocas mediante excavación o voladura. Investigación Minera. Nº registro: TT-076. https://www.eadic.com/wpcontent/uploads/2013/12/TT-076-Final.pdf.

ANA. 2010. Evaluación de recursos hídricos superficiales en la cuenca del río Mantaro. Tomo I.

ANA (Autoridad Nacional del Agua) / Ministerio de Agricultura. Lima, Perú. hdl.handle.net/20.500.12543/1968.

ANA. 2011. Protocolo de Monitoreo de la Calidad de los Recurso Hídricos. ANA (Autoridad Nacional del Agua) / Ministerio de Agricultura. Perú. www.gwp:globalassets/global/gwpsam_files/publicaciones/varios/2011-protocoloanaperu.pdf.

APHA, AWWA & WEF. 2012. Standard Methods for Examination of Water and Waste Water. 22nd Edition, American Public Health Association, Washington DC. https://betastatic.fishersci.com/content/dam/fishersci/en_US/documents/programs/scientific/technical-documents/whitepapers/apha-water-testing-standard-methodsintroduction-white-paper.pdf.

Arinbasarova A.Y., Biryukova E.N. & Medentsev A.G. 2015. Antistress systems of the yeast Yarrowia lipolitica. Applied Biochemistry and Microbiology, 51(2): 135-142. [Original Russian Text © A.Yu. Arinbasarova, E.N. Biryukova, A.G. Medentsev, 2015, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2015, Vol. 51, No. 2, pp. 122–131.]. https://link.springer.com/article/10.1134/S00036838150 20027.

Bahafid W., Joutey N.T., Asri M., Sayel H., Tirry N. & El Ghachtouli N. 2017. Yeast biomass: an alternative for bioremediation of heavy metals (Chapter 12). YeastIndustrial Applications, 269-289. DOI: https://doi.org//10.5772/intechopen.70559.

Bankar A.V., Kumar A.R. & Zinjarde S. 2009. Removal of chromium (VI) ions from aqueous solution by adsorption onto two marine isolates of Yarrowia lipolytica. Journal of Hazardous Materials, 170(1): 487-494. DOI: 10.1016/j.jhazmat.2009.04.070.

Bianchini F. 2009. Evaluación de la Calidad de los Recursos Hídricos en la Provincia de Pasco y de la Salud en el Centro Poblado de Paragsha. Asociación Civil Centro de Cultura Popular Labor. Pasco / Perú. https://laborpascoperu.org.pe/wpcontent/uploads/2020/08/Libro_Flaviano.pdf.

Botha A. 2011. The importance and ecology of yeasts in soil. Soil Biology and Biochemistry, 43(1), 1-8. DOI:10.1016/j.soilbio.2010.10.001.

Campaña-Pérez J.F., Portero P., Martín-Ramos P. & Carvajal E.J. 2019. Ecuadorian yeast species as microbial particles for Cr (VI) biosorption. Environmental Science and Pollution Research, 26(27): 28162-28172. https://link.springer.com/article/10.1007/s11356-019- 06035-8.

Cañizares-Villanueva R.O. 2000. Heavy metals biosorption by using microbial biomass. Revista Latinoamericana de Microbiología, 42(3): 131-143. https://www.medigraphic.com/cgibin/new/resumenI.cgi?IDARTICULO=10632.

Castillo J.H. 2008. Influencia antropogénica minera de la especie endémica Batrachophrynus macrostomus Peters, 1873 en peligro de extinción del lago Chinchaycocha (Pasco, Junín) 2007. Tesis para optar el grado académico de Doctoral en Ciencias Biológicas. Universidad Nacional de Trujillo. dspace.unitru.edu.pe/handle/UNITRU/5903.

Cusiche L.F. & Miranda G.A. 2019. Contaminación por aguas residuales e indicadores de calidad en la Reserva Nacional ‘Lago Junín’, Perú. Revista mexicana de ciencias agrícolas, 10(6), 1433-1447. DOI: 10.29312/remexca.v10i6.1870.

Chen Y., Li F., Mao J., Chen Y. & Nielsen J. 2021. Yeast optimizes metal utilization based on metabolic network and enzyme kinetics. Proceedings of the National Academy of Sciences, 118(12): e2020154118. DOI: 10.1073/pnas.2020154118.

DIGESA. 2003. RESOLUCIÓN MINISTERIAL Nº 615- 2003-SA/DM: Aprueban el documento "Criterios Microbiológicos de Calidad Sanitaria e Inocuidad para los Alimentos y Bebidas de Consumo Humano" RM del 30 de mayo del 2003. El Peruano: Normas Legales, 22(8406): 246849-246862. Sábado 28 de junio de 2003. https://busquedas.elperuano.pe/download/full/4Lower0oq3b8xHOhKjPxQW.

Dil E.A., Ghaedi M., Ghezelbash G.R., Asfaram A. & Purkait M.K. 2017. Highly efficient simultaneous biosorption of Hg2+, Pb2+ and Cu2+ by Live yeast Yarrowia lipolytica 70562 following response surface methodology optimization: Kinetic and isotherm study. Journal of Industrial and Engineering Chemistry, 48: 162-172. DOI:10.1016/j.jiec.2016.12.035.

Dinesen L., Chamorro A., Fjeldsa J. & Aucca C. 2018. Longterm declines in waterbirds abundance at Lake Junín, Andean Peru. Bird Conservation International, 29(1): 83- 99. DOI:10.1017/S0959270918000230.

Dold B., Wade C. & Fontboté L. 2009. Water management for acid mine drainage control at the polymetallic Zn–Pb– (Ag–Bi–Cu) deposit Cerro de Pasco, Peru. Journal of Geochemical Exploration, 100(2-3): 133-141. DOI:10.1016/j.gexplo.2008.05.002.

Dönmez G. & Aksu Z. 2001. Bioaccumulation of copper (ii) and nickel (ii) by the non- adapted and adapted growing Candida sp. Water Research, 35(6): 1425-1434. DOI: 10.1016/S0043-1354(00)00394-8.

Doyle J. 1991. DNA Protocols for Plants. In: Hewitt G.M., Johnston A.W.B. & Young J.P.W. (eds) Molecular Techniques in Taxonomy. NATO ASI Series, vol 57. Springer. Berlin, Heidelberg. DOI: 10.1007/978-3-642- 83962-7_18.

Dudeja S.S., Singh N.P., Sharma P., Gupta S.C., Chandra R., Dhar B., Bansal R.K., Brahmaprakash G.P., Potdukhe S.R., Gundappagol R.C., Gaikawad B.G. & Nagaraj K.S. 2011. Biofertilizer technology and pulse production. In: Bioaugmentation, Biostimulation and Biocontrol. 43-63. Part of the Soil Biology book series (SOILBIOL, volume 108). Springer. Berlin Heidelberg. DOI: 10.1007/978-3- 642-19769-7_3.

EPA. 1994. Method 200.7. Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. Revision 4.4 EMMC Version. EPA (U. S. Environmental Protection Agency). https://www.epa.gov/sites/default/files/2015-08/documents/method_200-7_rev_4-4_1994.pdf.

Fu Q., Li W.-X., Yao Y., Liu H., Su H.-Y., Ma D., Gu X.-K., Chen L., Wang Z., Zhang H., Wang B. & Bao X. 2010. Interface-confined ferrous centers for catalytic oxidation. Science, 328(5982): 1141-1144. DOI: 10.1126/science.1188267.

Fu S.-F., Sun P.-F., Lu H.-Y., Wei J.-Y., Xiao H.-S., Fang W.-T., Cheng B.-Y. & Chou, J. Y. 2016. Plant growthpromoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab. Fungal biology, 120(3): 433-448. DOI: 10.1016/j.funbio.2015.12.006.

Gizaw B., Tsegay Z., Tefera G., Aynalem E., Wassie M. & Abatneh E. 2017. Phosphate solubilizing fungi isolated and characterized from Teff rhizosphere soil collected from North Showa zone, Ethiopia. African Journal of Microbiology Research, 11(17): Article Number 66AF57F64120: 687-696. DOI: 10.5897/AJMR2017.8525.

Gross C., Kelleher M., Iyer V.R., Brown P.O. & Winge D.R. 2000. Identification of the copper regulon in Saccharomyces cerevisiae by DNA microarrays. Journal of Biological Chemistry, 275(41): 32310-32316. https://doi.org/10.1074/jbc.M005946200.

Higa T. & Parr J.F. 2013. Microorganismos Benéficos y efectivos para una agricultura y medio ambiente sostenibles. Maryland (USA): Centro internacional de Investigación de Agricultura Natural, Departamento de Agricultura de los Estados Unidos, 13. [Versión traducida de: Higa T. & Parr, J. F. 1994. Beneficial and effective microorganisms for a sustainable agriculture and environment. International Nature Farming Research Center. Atami, Japan. https://www.bokashi.se/dokument/bibliotek/EM.pdf]. https://itscv.edu.ec/wpcontent/uploads/2018/10/MICROORGANISMOS-DEL-SUELO-PARA-LA-AGRICULTURA.pdf. https://cdn.goconqr.com/uploads/media/pdf_media/4217 8589/ef577365-1bb5-4922-a61b-1e268f8784d6.pdf.

Hodson M.E. 2004. Heavy metals—geochemical bogey men? Environmental Pollution, 129(3): 341-343. DOI: 10.1016/j.envpol.2003.11.003.

Hosiner D., Gerber S., Lichtenberg-Fraté H., Glaser W., Schüller C. & Klipp E. 2014. Impact of Acute Metal Stress in Saccharomyces cerevisiae. PLOS ONE, 9(1): e83330. DOI: 10.1371/journal.pone.0083330.

Ito H., Inouhe M., Tohoyama H. & Joho M. 2007. Characteristics of copper tolerance in Yarrowia lipolytica. BioMetals, 20(5): 773-780. DOI: 10.1007/s10534-006-9040-0.

Jin Y.H., Dunlap P.E., McBride S.J., Al-Refai H., Bushel P.R. & Freedman J.H. 2008. Global Transcriptome and Deletome Profiles of Yeast Exposed to Transition Metals. PLOS Genetics, 4(4): e1000053. DOI: 10.1371/journal.pgen.1000053.

Kumar S., Stecher G. & Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7): 1870- 1874. DOI: 10.1093/molbev/msw054.

Loza A. & Mendoza W. 2017. Evaluación poblacional y de estado de conservación de Telmatobius macrostomus Peters, 1873 (Anura: Telmatobiidae) en humedales altoandinos, Región Pasco (Perú). Revista de Investigaciones Altoandinas, 19(2): 145–156. DOI: 10.18271/ria.2017.273.

Mamaev D. & Zvyagilskaya R. 2021. Yarrowia lipolytica: A multitalented yeast species of ecological significance. FEMS Yeast Research, 21(2): foab008. DOI: 10.1093/femsyr/foab008.

Michely S., Gaillardin C., Nicaud J.M. & Neuvéglise C. 2013. Comparative physiology of oleaginous species from the Yarrowia clade. PLOS ONE, 8(5): e63356. DOI: 10.1371/journal.pone.0063356.

MINAM (Ministerio del Ambiente / PE). 2012. Resolución Suprema 002-2012-MINAM: Plan de manejo ambiental sostenible Chinchaycocha 2012-2016. El Peruano (Normas Legales), 29(11873): 468035-468035. Sábado 9 de junio de 2012. http://www.minam.gob.pe/wpcontent/uploads/2013/09/rs-002-2012-minamplan_manejo_ambiental.pdf. https://busquedas.elperuano.pe/normaslegales/apruebanel-plan-de-manejo-ambiental-sostenible-chinchaycochresolucion-suprema-n-002-2012-minam-799555-7/. https://busquedas.elperuano.pe/download/full/BCWOWp9bKWUApheyGXepRn.

MINAM (Ministerio del Ambiente / PE). 2017. Decreto Supremo Nº 004-2017-MINAM: Aprueban Estándares de Calidad Ambiental (ECA) para Agua y establecen Disposiciones Complementarias. Diario (Oficial) El Peruano (Normas Legales), 34(14101): 10-19. miércoles 7 de junio de 2017. busquedas.elperuano.pe/download/full/A9FfboQZawNA tgAiwXkB6T.

MINEM (Ministerio de Energía y Minas / PE). 2009. Resolución del Consejo de Minería N° 499-2009 / CM. Dirección General de Minería.

MINSA (Ministerio de Salud / PE). 2011. Análisis de Situación de Salud de la Región Pasco. Dirección Regional de Salud en Pasco.

Nicaud J.M. 2012. Yarrowia lipolytica. Yeast, 29(10): 409- 418. DOI: 10.1002/yea.2921.

Orbegozo J., Abanto M., García R. & Ramírez P. 2008. Identificación molecular de Pichia guillermondii aislada de aguas ácidas de minas en el Perú y su resistencia a metales pesados. Revista Peruana de Biología, 15(1): 91- 95. DOI: 10.15381/rpb.v15i1.1681.

Rehman A., Farooq H. & Hasnain S. 2008. Biosorption of copper by yeast, Loddermyces elongisporus, isolated from industrial effluents: its potential use in wastewater treatment. Journal of Basic Microbiology, 48(3): 195- 201. DOI: 10.1002/jobm.200700324.

Rehman A., Farooq H. & Shakoori A. R. 2007. Copper tolerant yeast, Candida tropicalis, isolated from industrial effluents: Its potential use in wastewater treatment. Pakistan Journal of Zoology, 39(6): 405-412. zsp.com.pk/pdf3/405-412%20(9).pdf.

Skousen J., Rose A., Geidel G., Foreman J., Evans R. & Hellier W. 1998. A Handbook of technologies for avoidance and remediation of acid mine drainage. National Mine Land Reclamation Center, located at West Virginia University in Morgantown, West Virginia. wvwri.wvu.edu/files/d/c2e42b2b-e40d-4ada-8bad3c264d867e76/99-handbook-avoidance-remediation.pdf.

Sun X.-Y., Zhao Y., Liu L.-L., Jia, B., Zhao F., Huang W.-D. & Zhan J.-C. 2015. Copper Tolerance and Biosorption of Saccharomyces cerevisiae during Alcoholic Fermentation. PLOS ONE, 10(6): e0128611. DOI: 10.1371/journal.pone.0128611.

Wade C., Dold B. & Fontboté L. 2006. Geochemistry and Mineralogy ff the Quiulacocha Tailings Impoundment from the Polymetallic Zn-Pb-(Ag-Bi-Cu) Deposit Cerro De Pasco, Peru. In: Barnhisel R.I. (Ed.) 7th International Conference on Acid Rock Drainage (ICARD), March 26- 30, 2006, St. Louis MO. 2199-2206. American Society of Mining and Reclamation (ASMR). DOI: 10.21000/JASMR06022198.

Wang J. & Chen C. 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24(5): 427-451. DOI: 10.1016/j.biotechadv.2006.03.001.

Downloads

Published

2023-07-24

Issue

Section

Artículos originales

How to Cite

Sánchez-Rojas, T. L. ., Macedo-Prada, D., Ramírez, P. S. ., Arrieta, L. K. ., Durán, Y. ., Flores, A. ., Manya, W. F. ., & Guerra, G. . (2023). Yarrowia lipolytica STRAINS ISOLATED FROM HIGH ANDEAN LAGOONS OF PERU CONTAMINATED WITH MINING TAILINGS AS POTENTIAL AGENTS FOR THE BIOREMEDIATION OF HEAVY METALS. Ecología Aplicada, 22(1), 1-16. https://doi.org/10.21704/rea.v22i1.1978