TEMPORAL ANALYSIS OF AIR POLLUTANTS (NO2, GROUND-LEVEL O3, AND CO) AND THEIR RELATIONSHIP TO AIR TEMPERATURE AND SOLAR RADIATION IN LIMA METROPOLITANA

Authors

DOI:

https://doi.org/10.21704/rea.v22i1.850

Keywords:

NO2, CO, ground-level O3, air temperature, solar radiation, vehicular traffic, temporal analysis, Lima Metropolitana area

Abstract

This study includes the temporal analysis of the levels of NO2, CO, and ground-level O3 measured in Lima Metropolitana between the years 2015 to 2018 and the relationship between them and with air temperature and solar radiation. For this, descriptive, correlational, and regression temporal analyzes were carried out using hourly records taken in different areas of the city. The levels of the gases evaluated were mainly below the Peruvian regulations and the World Health Organization's air quality guidelines, so their influence on the health of the population was not relevant. The hourly levels of these gases were bimodal and were influenced by vehicular traffic for NO2 and CO, and by solar radiation for ground-level O3; although, the latter may also have been influenced by its nocturnal movement. Daily behavior showed the so-called "weekend effect". The correlation analysis indicated a homogeneous behavior of the parameters between the evaluated areas; plus, there was a negative correlation between CO and ground-level O3. Furthermore, there was a positive correlation between NO2 and CO; and between the meteorological factors with NO2 and ground-level O3. Finally, multiple linear regression models were generated that adequately estimated the historical values of ground-level O3. Key words: NO2, CO, ground-level O3, air temperature, solar radiation, vehicular traffic, temporal analysis, Lima Metropolitana area.

Downloads

Download data is not yet available.

References

Agudelo-Castaneda D.M., Teixeira E.C. & Pereira F.N. 2014. Time-series analysis of surface ozone and nitrogen oxides concentrations in an urban area at Brazil. Atmospheric Pollution Research, 5(3): 411-420. DOI https://doi.org/10.5094/APR.2014.048.

Alghamdi M.A., Al-Hunaiti A., Arar S., Khoder M., Abdelmaksoud A.S., Al-Jeelani H., Lihavainen H., Hyvärinen A., Shabbaj I.I., Almehmadi F.M., Zaidan M.A., Hussein T. & Dada L. 2019. A Predictive Model for Steady State Ozone Concentration at an Urban Coastal Site. International Journal of Environmental Research and Public Health, 16(2): art. 258. DOI https://doi.org/10.3390/ijerph16020258.

Awang N.R., Ramli N.A., Yahaya A.S. & Elbayoumi M. 2015. High Nighttime Ground-Level Ozone Concentrations in Kemaman: NO and NO2 Concentrations Attributions. Aerosol and Air Quality Research, 15(4): 1357-1366. DOI: https://doi.org/10.4209/aaqr.2015.01.0031.

Castellano M., Franco A., Cartelle D., Febrero-Bande M. & Roca E. 2009. Identification of NOx and Ozone Episodes and Estimation of Ozone by Statistical Analysis. Water, Air, and Soil Pollution, 198: 95-110. DOI https://doi.org/10.1007/s11270-008-9829-2.

Cichowicz R. & Stelegowski A. 2019. Average Hourly Concentrations of Air Contaminants in Selected Urban, Town, and Rural Sites. Archives of Environmental Contamination and Toxicology, 77: 197-213. DOI https://doi.org/10.1007/s00244-019-00627-8.

Feng X., Wei S. & Wang, S. 2020. Temperature inversions in the atmospheric boundary layer and lower troposphere over the Sichuan Basin, China: Climatology and impacts on air pollution. Science of the Total Environment, 726: 138579. DOI https://doi.org/10.1016/j.scitotenv.2020.138579.

Frost J. 2019. Regression Analysis: An Intuitive Guide for Using and Interpreting Linear Models. First edition. Statistics By Jim Publishing, State Collage, Pennsylvania. https://statisticsbyjim.com/regression/.

Gasmi K., Aljalal A., Al-Basheer W. & Abdulahi M. 2017. Analysis of NOx, NO and NO2 ambient levels in Dhahran, Saudi Arabia. Urban Climate, 21: 232-242. DOI https://doi.org/10.1016/j.uclim.2017.07.002.

Ghazali N.A., Ramli N.A., Yahaya A.S., Yusof N.F., Sansuddin N. & Al Madhoun, W.A. 2010. Transformation of nitrogen dioxide into ozone and prediction of ozone concentrations using multiple linear regression techniques. Environmental Monitoring and Assessment, 165: 475-489. DOI https://doi.org/10.1007/s10661-009-0960-3.

INEI (Instituto Nacional de Estadística e Informática). 2018. Censos Nacionales 2017: XII de Población, VII de Vivienda y III de Comunidades Indígenas. Perfil Sociodemográfico, Informe Nacional. INEI. Lima, Perú. https://www.inei.gob.pe/media/MenuRecursivo/publicac iones_digitales/Est/Lib1539/libro.pdf.

Ismail M., Abdullah S., Yuen F.S. & Ghazali N.A. 2016. A Ten Year Investigation on Ozone and It Precursors at Kemaman, Terengganu, Malaysia. EnvironmentAsia, 9(1): 1-8. DOI https://doi.org/10.14456/ea.1473.1.

Jaffar M.I., Hamid H.A., Yunus R. & Raffee A.F. 2018. Fitting Statistical Distribution on Air Pollution: An Overview. International Journal of Engineering & Technology, 7: 40-44. DOI https://doi.org/10.14419/ijet.v7i3.23.17256.

Jaioun K., Saithanu K. & Mekparyup J. 2014. Multiple Linear Regression Model to Estimate Ozone concentration in Chonburi, Thailand. International Journal of Applied Environmental Sciences, 9(4): 1305-1308. https://www.ripublication.com/ijaes3/ijaesv9n4_25.pdf.

Jang E., Do W., Park G., Kim M. & Yoo E. 2017. Spatial and temporal variation of urban air pollutants and their concentrations in relation to meteorological conditions at four sites in Busan, South Korea. Atmospheric Pollution Research, 8(1): 89-100. DOI https://doi.org/10.1016/j.apr.2016.07.009.

Jones A.M., Harrison R.M. & Baker J. 2010. The wind speed dependence of the concentrations of airborne particulate matter and NOx. Atmospheric Environment, 44(13): 1682-1690. DOI https://doi.org/10.1016/j.atmosenv.2010.01.007.

Kalbarczyk R., Kalbarczyk E., Niedźwiecka-Filipiak I. & Serafin L. 2015. Ozone Concentration at Ground Level Depending on the Content of NOx and Meteorological Conditions. Ecological Chemistry and Engineering S., 22(4): 527-541. Published Online: 21 Jan 2016. DOI https://doi.org/10.1515/eces-2015-0031.

Kovač-Andrić E., Radanović T., Topalović I., Marković B. & Sakač N. 2013. Temporal variations in concentrations of ozone, nitrogen dioxide, and carbon monoxide at Osijek, Croatia. Advances in Meteorology, 2013: Article ID 469786. DOI https://doi.org/10.1155/2013/469786.

Leighton P. 1961. Photochemistry of Air Pollution. 1st edition. -Physical Chemistry: A Series of Monographs, Edited by Eric Hutchinson and Van Rysselberghe. Academic Press. New York, New York. https://openlibrary.org/books/OL5825 045M/Photochemistry_of_air_pollution.

Liu P., Song H., Wang T., Wang F., Li X., Miao C. & Zhao H. 2020. Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environmental Pollution, 262(2020): art. 114366. DOI https://doi.org/10.1016/j.envpol.2020.114366.

Monks P.S., Archibald A.T., Colette A., Cooper O., Coyle M., Derwent R., Fowler D., Granier C., Law K.S., Mills G.E., Stevenson D.S., Tarasova O., Thouret V., von Schneidemesser E., Sommariva R., Wild O. & Williams M.L. 2015. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics, 15(15): 8889-8973. DOI https://doi.org/10.5194/acp-15- 8889-2015.

Ocak S. & Turalioglu F.S. 2008. Effect of Meteorology on the Atmospheric Concentrations of Traffic-Related Pollutants in Erzurum, Turkey. Journal of International Environmental Application and Science, 3: 325-335.

Organización Mundial de la Salud. 2021. Guías globales de calidad del aire de la OMS. OMS, Copenhagen, Denmark.

Ramos R. & Meza V. 2017. Efectos de algunos factores meteorológicos sobre la concentración de esporas de hongos en la plaza San Martín de Lima. Ecología Aplicada, 16(2): 143-149. DOI http://dx.doi.org/10.21704/rea.v16i2.1018.

Roberts-Semple D., Song F. & Gao Y. 2012. Seasonal characteristics of ambient nitrogen oxides and ground level ozone in metropolitan northeastern New Jersey. Atmospheric Pollution Research, 3(2): 247-257. DOI https://doi.org/10.5094/APR.2012.027.

Sicard P., Paoletti E., Agathokleous E., Araminienė V., Proietti C., Coulibaly F. & De Marco A. 2020. Ozone weekend effect in cities: Deep insights for urban air pollution control. Environmental Research, 191: 110193. DOI https://doi.org/10.1016/j.envres.2020.110193.

Steinberger E.H. & Ganor E. 1980. High Ozone Concentrations at Night in Jerusalem and Tel-Aviv. Atmospheric Environment, 14(2): 221-225. DOI https://doi.org/10.1016/0004-6981(80)90281-4.

Szep R., Matyas L., Keresztes R. & Ghimpusan M. 2016. Tropospheric Ozone Concentrations - Seasonal and Daily Analysis and its Association with NO and NO2 as Function of NOx in Ciuc Depression - Romania. Revista de Chimie, 67(2): 205-213. http://bch.ro/pdfRC/SZEP%20R%202%2016.pdf.

Tumwitike H.W., Tenthani C., Tskama M. & Mphangwe I. 2014. Air quality assessment of carbon monoxide, nitrogen dioxide and sulfur dioxide levels in Blantyre, Malawi: a statistical approach to a stationary environmental monitoring station. African Journal of Environmental Science and Technology, 8(6): 330-343. https://doi.org/10.5897/AJEST2014.1696.

Wallace J. & Kanaroglou P. 2009. The effect of temperature inversions on ground-level nitrogen dioxide (NO2) and fine particulate matter (PM2.5) using temperature profiles from the Atmospheric Infrared Sounder (AIRS). Science of The Total Environmentm, 407(18): 5085-5095. DOI https://doi.org/10.1016/j.scitotenv.2009.05.050.

Wang L., Wang J., Tan X. & Fang C. 2019. Analysis of NOx Pollution Characteristics in the Atmospheric Environment in Changchun City. Atmosphere, 11(1): article 30. DOI https://doi.org/10.3390/atmos11010030.

Wang X., Shen Z., Cao J., Zhang L., Liu L., Li J., Liu S. & Sun Y. 2012. Characteristics of surface ozone at an urban site of Xi’an in Northwest China. Journal of Environmental Monitoring, 14(1): 116-126. DOI https://doi.org/10.1039/c1em10541h.

Zhang J., Wang C., Qu K., Ding J., Shang Y., Liu H. & Wei M. 2019. Characteristics of Ozone Pollution, Regional Distribution and Causes during 2014-2018 in Shandong Province, East China. Atmosphere, 10(9): article 501. DOI https://doi.org/10.3390/atmos10090501.

Zoran M.A., Savastru R.S., Savastru D.M. & Tautan M.N. 2020. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Science of the Total Environment, 740(2020): art. 140005. DOI https://doi.org/10.1016/j.scitotenv.2020.140005.

Downloads

Published

2023-07-24

Issue

Section

Artículos originales

How to Cite

Benites-Morales, O. F. ., & Pacsi-Valdivia, S. A. (2023). TEMPORAL ANALYSIS OF AIR POLLUTANTS (NO2, GROUND-LEVEL O3, AND CO) AND THEIR RELATIONSHIP TO AIR TEMPERATURE AND SOLAR RADIATION IN LIMA METROPOLITANA. Ecología Aplicada, 22(1), 17-25. https://doi.org/10.21704/rea.v22i1.850