ANÁLISIS TEMPORAL DE LOS CONTAMINANTES ATMOSFÉRICOS (NO2, O3 TROPOSFÉRICO Y CO) Y SU RELACIÓN CON LA TEMPERATURA DEL AIRE Y LA RADIACIÓN SOLAR EN LIMA METROPOLITANA
DOI:
https://doi.org/10.21704/rea.v22i1.850Palavras-chave:
NO2, CO, O3 troposférico, temperatura del aire, radiación solar, tráfico vehicular, análisis temporal, Lima MetropolitanaResumo
El presente estudio comprende el análisis temporal de los niveles de NO2, CO y O3 troposférico acontecidos en Lima Metropolitana entre los años 2015 al 2018, y su relación entre sí y con la temperatura del aire y la radiación solar. Para ello, se desarrollaron análisis temporales descriptivos, correlacionales y de regresión empleando información horaria registrada en diferentes zonas que componen la ciudad. Se advirtió que los niveles de los gases evaluados se encontraron principalmente por debajo de la normativa peruana y los valores guía establecidos por la Organización Mundial de la Salud, por lo que su influencia en la salud de la población no fue relevante. El comportamiento horario de estos gases fue bimodal y estuvo influenciado por el tráfico vehicular para el NO2 y el CO, y por la radiación solar para el O3 troposférico; aunque, posiblemente este último también haya estado influenciado por su desplazamiento nocturno. En el comportamiento diario se evidenció el denominado “efecto fin de semana”. El análisis correlacional indicó un comportamiento homogéneo de los parámetros entre las zonas evaluadas; y se observó una clara correlación negativa entre el CO con el O3 troposférico y una clara correlación positiva entre el NO2 con el CO y entre los parámetros meteorológicos con el NO2 y con el O3 troposférico. Finalmente, se generaron modelos de regresión lineal múltiple que estimaron adecuadamente los valores históricos de O3 troposférico.
Downloads
Referências
Agudelo-Castaneda D.M., Teixeira E.C. & Pereira F.N. 2014. Time-series analysis of surface ozone and nitrogen oxides concentrations in an urban area at Brazil. Atmospheric Pollution Research, 5(3): 411-420. DOI https://doi.org/10.5094/APR.2014.048.
Alghamdi M.A., Al-Hunaiti A., Arar S., Khoder M., Abdelmaksoud A.S., Al-Jeelani H., Lihavainen H., Hyvärinen A., Shabbaj I.I., Almehmadi F.M., Zaidan M.A., Hussein T. & Dada L. 2019. A Predictive Model for Steady State Ozone Concentration at an Urban Coastal Site. International Journal of Environmental Research and Public Health, 16(2): art. 258. DOI https://doi.org/10.3390/ijerph16020258.
Awang N.R., Ramli N.A., Yahaya A.S. & Elbayoumi M. 2015. High Nighttime Ground-Level Ozone Concentrations in Kemaman: NO and NO2 Concentrations Attributions. Aerosol and Air Quality Research, 15(4): 1357-1366. DOI: https://doi.org/10.4209/aaqr.2015.01.0031.
Castellano M., Franco A., Cartelle D., Febrero-Bande M. & Roca E. 2009. Identification of NOx and Ozone Episodes and Estimation of Ozone by Statistical Analysis. Water, Air, and Soil Pollution, 198: 95-110. DOI https://doi.org/10.1007/s11270-008-9829-2.
Cichowicz R. & Stelegowski A. 2019. Average Hourly Concentrations of Air Contaminants in Selected Urban, Town, and Rural Sites. Archives of Environmental Contamination and Toxicology, 77: 197-213. DOI https://doi.org/10.1007/s00244-019-00627-8.
Feng X., Wei S. & Wang, S. 2020. Temperature inversions in the atmospheric boundary layer and lower troposphere over the Sichuan Basin, China: Climatology and impacts on air pollution. Science of the Total Environment, 726: 138579. DOI https://doi.org/10.1016/j.scitotenv.2020.138579.
Frost J. 2019. Regression Analysis: An Intuitive Guide for Using and Interpreting Linear Models. First edition. Statistics By Jim Publishing, State Collage, Pennsylvania. https://statisticsbyjim.com/regression/.
Gasmi K., Aljalal A., Al-Basheer W. & Abdulahi M. 2017. Analysis of NOx, NO and NO2 ambient levels in Dhahran, Saudi Arabia. Urban Climate, 21: 232-242. DOI https://doi.org/10.1016/j.uclim.2017.07.002.
Ghazali N.A., Ramli N.A., Yahaya A.S., Yusof N.F., Sansuddin N. & Al Madhoun, W.A. 2010. Transformation of nitrogen dioxide into ozone and prediction of ozone concentrations using multiple linear regression techniques. Environmental Monitoring and Assessment, 165: 475-489. DOI https://doi.org/10.1007/s10661-009-0960-3.
INEI (Instituto Nacional de Estadística e Informática). 2018. Censos Nacionales 2017: XII de Población, VII de Vivienda y III de Comunidades Indígenas. Perfil Sociodemográfico, Informe Nacional. INEI. Lima, Perú. https://www.inei.gob.pe/media/MenuRecursivo/publicac iones_digitales/Est/Lib1539/libro.pdf.
Ismail M., Abdullah S., Yuen F.S. & Ghazali N.A. 2016. A Ten Year Investigation on Ozone and It Precursors at Kemaman, Terengganu, Malaysia. EnvironmentAsia, 9(1): 1-8. DOI https://doi.org/10.14456/ea.1473.1.
Jaffar M.I., Hamid H.A., Yunus R. & Raffee A.F. 2018. Fitting Statistical Distribution on Air Pollution: An Overview. International Journal of Engineering & Technology, 7: 40-44. DOI https://doi.org/10.14419/ijet.v7i3.23.17256.
Jaioun K., Saithanu K. & Mekparyup J. 2014. Multiple Linear Regression Model to Estimate Ozone concentration in Chonburi, Thailand. International Journal of Applied Environmental Sciences, 9(4): 1305-1308. https://www.ripublication.com/ijaes3/ijaesv9n4_25.pdf.
Jang E., Do W., Park G., Kim M. & Yoo E. 2017. Spatial and temporal variation of urban air pollutants and their concentrations in relation to meteorological conditions at four sites in Busan, South Korea. Atmospheric Pollution Research, 8(1): 89-100. DOI https://doi.org/10.1016/j.apr.2016.07.009.
Jones A.M., Harrison R.M. & Baker J. 2010. The wind speed dependence of the concentrations of airborne particulate matter and NOx. Atmospheric Environment, 44(13): 1682-1690. DOI https://doi.org/10.1016/j.atmosenv.2010.01.007.
Kalbarczyk R., Kalbarczyk E., Niedźwiecka-Filipiak I. & Serafin L. 2015. Ozone Concentration at Ground Level Depending on the Content of NOx and Meteorological Conditions. Ecological Chemistry and Engineering S., 22(4): 527-541. Published Online: 21 Jan 2016. DOI https://doi.org/10.1515/eces-2015-0031.
Kovač-Andrić E., Radanović T., Topalović I., Marković B. & Sakač N. 2013. Temporal variations in concentrations of ozone, nitrogen dioxide, and carbon monoxide at Osijek, Croatia. Advances in Meteorology, 2013: Article ID 469786. DOI https://doi.org/10.1155/2013/469786.
Leighton P. 1961. Photochemistry of Air Pollution. 1st edition. -Physical Chemistry: A Series of Monographs, Edited by Eric Hutchinson and Van Rysselberghe. Academic Press. New York, New York. https://openlibrary.org/books/OL5825 045M/Photochemistry_of_air_pollution.
Liu P., Song H., Wang T., Wang F., Li X., Miao C. & Zhao H. 2020. Effects of meteorological conditions and anthropogenic precursors on ground-level ozone concentrations in Chinese cities. Environmental Pollution, 262(2020): art. 114366. DOI https://doi.org/10.1016/j.envpol.2020.114366.
Monks P.S., Archibald A.T., Colette A., Cooper O., Coyle M., Derwent R., Fowler D., Granier C., Law K.S., Mills G.E., Stevenson D.S., Tarasova O., Thouret V., von Schneidemesser E., Sommariva R., Wild O. & Williams M.L. 2015. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmospheric Chemistry and Physics, 15(15): 8889-8973. DOI https://doi.org/10.5194/acp-15- 8889-2015.
Ocak S. & Turalioglu F.S. 2008. Effect of Meteorology on the Atmospheric Concentrations of Traffic-Related Pollutants in Erzurum, Turkey. Journal of International Environmental Application and Science, 3: 325-335.
Organización Mundial de la Salud. 2021. Guías globales de calidad del aire de la OMS. OMS, Copenhagen, Denmark.
Ramos R. & Meza V. 2017. Efectos de algunos factores meteorológicos sobre la concentración de esporas de hongos en la plaza San Martín de Lima. Ecología Aplicada, 16(2): 143-149. DOI http://dx.doi.org/10.21704/rea.v16i2.1018.
Roberts-Semple D., Song F. & Gao Y. 2012. Seasonal characteristics of ambient nitrogen oxides and ground level ozone in metropolitan northeastern New Jersey. Atmospheric Pollution Research, 3(2): 247-257. DOI https://doi.org/10.5094/APR.2012.027.
Sicard P., Paoletti E., Agathokleous E., Araminienė V., Proietti C., Coulibaly F. & De Marco A. 2020. Ozone weekend effect in cities: Deep insights for urban air pollution control. Environmental Research, 191: 110193. DOI https://doi.org/10.1016/j.envres.2020.110193.
Steinberger E.H. & Ganor E. 1980. High Ozone Concentrations at Night in Jerusalem and Tel-Aviv. Atmospheric Environment, 14(2): 221-225. DOI https://doi.org/10.1016/0004-6981(80)90281-4.
Szep R., Matyas L., Keresztes R. & Ghimpusan M. 2016. Tropospheric Ozone Concentrations - Seasonal and Daily Analysis and its Association with NO and NO2 as Function of NOx in Ciuc Depression - Romania. Revista de Chimie, 67(2): 205-213. http://bch.ro/pdfRC/SZEP%20R%202%2016.pdf.
Tumwitike H.W., Tenthani C., Tskama M. & Mphangwe I. 2014. Air quality assessment of carbon monoxide, nitrogen dioxide and sulfur dioxide levels in Blantyre, Malawi: a statistical approach to a stationary environmental monitoring station. African Journal of Environmental Science and Technology, 8(6): 330-343. https://doi.org/10.5897/AJEST2014.1696.
Wallace J. & Kanaroglou P. 2009. The effect of temperature inversions on ground-level nitrogen dioxide (NO2) and fine particulate matter (PM2.5) using temperature profiles from the Atmospheric Infrared Sounder (AIRS). Science of The Total Environmentm, 407(18): 5085-5095. DOI https://doi.org/10.1016/j.scitotenv.2009.05.050.
Wang L., Wang J., Tan X. & Fang C. 2019. Analysis of NOx Pollution Characteristics in the Atmospheric Environment in Changchun City. Atmosphere, 11(1): article 30. DOI https://doi.org/10.3390/atmos11010030.
Wang X., Shen Z., Cao J., Zhang L., Liu L., Li J., Liu S. & Sun Y. 2012. Characteristics of surface ozone at an urban site of Xi’an in Northwest China. Journal of Environmental Monitoring, 14(1): 116-126. DOI https://doi.org/10.1039/c1em10541h.
Zhang J., Wang C., Qu K., Ding J., Shang Y., Liu H. & Wei M. 2019. Characteristics of Ozone Pollution, Regional Distribution and Causes during 2014-2018 in Shandong Province, East China. Atmosphere, 10(9): article 501. DOI https://doi.org/10.3390/atmos10090501.
Zoran M.A., Savastru R.S., Savastru D.M. & Tautan M.N. 2020. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Science of the Total Environment, 740(2020): art. 140005. DOI https://doi.org/10.1016/j.scitotenv.2020.140005.
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2023 Orlando Fernando Benites-Morales, Sergio Artemio Pacsi-Valdivia
Este trabalho encontra-se publicado com a Licença Internacional Creative Commons Atribuição-NãoComercial 4.0.