Three sources of silicon in biomass production of rice (Oryza sativa L.) under controlled conditions

Authors

  • Cesar Franco Padilla-Castro Universidad Nacional Agraria La Molina, Laboratorio de fertilidad del suelo, Departamento de Suelos, Facultad de Agronomía, Av. La Molina s/n, Lima, Perú. https://orcid.org/0000-0002-3862-7816
  • Luis Rodrigo Tomassini-Vidal Universidad Nacional Agraria La Molina, Departamento de Suelos, Facultad de Agronomía, Av. La Molina s/n, Lima, Perú.
  • Elizabeth Consuelo Heros-Aguilar Universidad Nacional Agraria La Molina, Programa de investigación y proyección social en cereales y granos nativos, Departamento de Fitotecnia, Facultad de Agronomía, Av. La Molina s/n, Lima, Perú.

DOI:

https://doi.org/10.21704/pja.v6i1.1862

Keywords:

silicon nutrition, rice yield components, ladle furnace slag, potassium silicate, rice husk ash.

Abstract

A pot experiment was conducted in the campus of La Molina National Agrarian University in order to evaluate the effect of rice husk ash, ladle furnace slag and potassium silicate on the soil chemical properties and biomass of rice (Oryza sativa L.) cv. ‘Fedearroz 60’, using topsoil from a commercial paddy field at Aucayacu, Huanuco, Peru. Doses were calculated taking into consideration each product available Si (SiA), for reaching concentrations of 100, 200 and 400 ppm (w / w) of SiA in soil before sowing. Control pots without any silicon amendment were considered as well. A completely randomized design with factorial arrangement (3 × 4) was used to assess the Si absorption by plant tissues, final SiA in soils, roots volume, whole plant’s dry weight, tillering capacity, panicles per plant and average spikelets per panicle. Salinity and pH of the growing media were registered weekly. Also were environmental temperature, and light intensity on a daily basis. Results showed that potassium silicate 200 ppm sustainably increased SiA in soils and Si in plant tissue, however the yield components were not positively influenced. Ladle furnace slag increased SiA in soils too, nonetheless for doses of 200 ppm and 400 ppm, symptoms of severe nutritional problems appeared. Rice husk ash did not show statistical significance on SiA in soils, Si in plant tissue, nor yield components. It was concluded that for such soil and weather conditions involved in this experiment, silicon increases in soil and tissues had no influence on rice yield components. In spite of this, ladle furnace slag exhibited an outstanding liming capacity and rice husk ash, a great amount of P, K and micronutrients.

Downloads

Download data is not yet available.

References

Abad, L. (2017). Influencia de bioactivadores fisiológicos en la productividad del cultivo de arroz (Oryza sativa L.) en el distrito de Morales, Región San Martín. [Undergraduate thesis, Universidad Nacional de San Martín]. UNSM Institutional repository. http://repositorio.unsm.edu.pe/handle/11458/2461

Arnon, D. I., & Stout, P. R. (1939). The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant physiology, 14 (2), 371–375.

Balasta, M., Perez, C. M., Juliano, B. O., Villlareal, C. P., Lott, J. N. A., & ​​Roxas, D. B. (1989). Effects of silica level on some properties of Oryza sativa straw and hull. Canadian Journal of Botany, 67 (8), 2356–2363. https://doi.org/10.1139/b89-301

Bertsch, F. (2009). Nutrient uptake by cultures [CD-ROOM]. San José, Costa Rica: Costa Rican Association of Soil Science.

Camargo, M., Pereira, H. S., Korndörfer, G. H., Queiroz, A. A., & Reis, C. (2007). Soil reaction and absorption of silicon by rice. Scientia Agricola, 64 (2), 176–180. https://doi.org/10.1590/S0103-90162007000200011

Das, S., Gwon, H. S., Khan, M. I., Jeong, S. T., & Kim, P. J. (2020). Steel slag amendment impacts on soil microbial communities and activities of rice (Oryza sativa L.). Scientific Reports, 10(1), Article number: 6746. https://doi.org/10.1038/s41598-020-63783-1

Della, V., Kuhn, I., & Hotza, D. (2002). Rice husk ash as an element source for active silica production. Materials Letters, 57 (4), 818–821. https://doi.org/10.1016/S0167-577X(02)00879-0

Desplanques, V., Cary, L., Mouret, J.C., Trolard, F., Bourrié, G., Grauby, O., & Meunier, J.D. (2006). Silicon transfers in a rice field in Camargue (France). Journal of Geochemical Exploration, 88 (1-3), 190–193. https://doi.org/10.1016/j.gexplo.2005.08.036

Drenkhan, F., Carey, M., Huggel, C., Seidel, J., & Oré, M. T. (2015). The changing water cycle: climatic and socioeconomic drivers of water‐related changes in the Andes of Peru. WIREs Water, 2(6), 715–733. https://doi.org/10.1002/wat2.1105

Elgawhary, S., & Lindsay, W. (1972). Solubility of silica in soils. Soil Science Society of America Journal, 36, 439–442. https://doi:10.2136/sssaj1972.03615995003600030022x

Encina, K. (2017). Escoria básica y carbonato de calcio en la recuperación de un suelo ácido de Tingo María en Maíz (Zea mays) PM 213 en invernadero. [Undergraduate thesis, Universidad Nacional Agraria La Molina]. UNALM institutional repository. https://repositorio.lamolina.edu.pe/handle/20.500.12996/2682

Epstein, E. (1994). The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the United States of America, 91 (1), 11–17. https://doi.org/10.1073/pnas.91.1.11

Epstein, E. (1999). Silicon. Annual Review of Plant Physiology and Plant Molecular Biology, (50), 641-664. https://doi.org/10.1146/annurev.arplant.50.1.641

Food and Agriculture Organization of the United Nations. (2021). FAOSTAT statistical database. https://www.fao.org/faostat/es/#data

Gu, H.H., Qiu, H., Tian, ​​T., Zhan, S.S., Deng, T.H., Chaney, R.L., Wang, S., Tang, Y., Morel, J., & Qiu, R.L. (2011). Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil. Chemosphere, 83 (9), 1234–1240. https://doi.org/10.1016/j.chemosphere.2011.03.014

Hasanuzzaman, M., Nahar, K., & Fujit, M. (2013). Extreme temperature responses, oxidative stress and antioxidant defense in plants. Abiotic Stress - Plant Responses and Applications in Agriculture. https://doi.org/10.5772/54833

Heros, E. (2012). Manual técnico de manejo integrado del arroz. Lima, Peru. Universidad Nacional Agraria La Molina.

Hodson, M. J., White, P. J., Mead, A., & Broadley, M. R. (2005). Phylogenetic variation in the silicon composition of plants. Annals of Botany, 96 (6), 1027–1046. https://doi.org/10.1093/aob/mci255

Le-Blond, J. S., Horwell, C. J., Williamson, B. J., & Oppenheimer, C. (2010). Generation of crystalline silica from sugarcane burning. Journal of Environmental Monitoring, 12 (7), 1459–1470. https://doi.org/10.1039/c0em00020e

Liang, Y., Belanger, R., Nikolic, M., Gong, H., & Song, A. (2015). Silicon in Agriculture. Studies in Plant Science (Vol. 1).

Ma, J., Mitani, N., Nagao, S., Konishi, S., Tamai, K., Iwashita, T., & Yano, M. (2004). Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiology, 136 (2), 3284–3289. https://doi.org/10.1104/pp.104.047365

Ma, J., Miyake, Y., & Takahashi, E. (2001). Silicon as a beneficial element for crop plants. In L. E. Datnoff, G. H. Snyder, & G. H. Korndörfer (Eds.), Studies in Plant Science (pp. 17–39). https://doi.org/10.1016/S0928-3420(01)80006-9

Ma, J., Yamaji, N., & Mitani-Ueno, N. (2011). Transport of silicon from roots to panicles in plants. Proceedings of the Japan Academy, Series B, 87 (7), 377–385. https://doi.org/10.2183/pjab.87.377

Ma, J., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara , M., & Yano, M. (2007a). An efflux transporter of silicon in rice. Nature, 448 (7150), 209-212. https://doi.org/10.1038/nature05964

Ma, J., Yamaji, N., Tamai, K., & Mitani, N. (2007b). Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiology, 145 (3), 919–924. https://doi.org/10.1104/pp.107.107599

Maas, E. V. & Hoffman G. J. (1977). Crop Salt Tolerance-Current Assessment. Journal of the Irrigation and Drainage Division, 103 (2). https://doi.org/10.1061/JRCEA4.0001137

Matichenkov, V. V., & Bocharnikova, E. A. (2001). The relationship between silicon and soil physical and chemical properties. In L.E. Datnoff, G.H. Snyder, & G.H. Korndörfer (Eds.), Studies in Plant Science, Volume 8 (pp. 209–219). https://doi.org/10.1016/S0928-3420(01)80017-3

McCree, K. (1981). Photosynthetically active radiation. In O. L. Lange, P. S. Nobel, C. B. Osmond & H. Ziegler (Eds.), Physiological Plant Ecology I Responses to the Physical Environment Vol. 12A (pp. 41–55). http://doi.org/10.1007/978-3-642-68090-8

Meharg, C., & Meharg, A. A. (2015). Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environmental and Experimental Botany, 120, 8–17. https://doi.org/10.1016/j.envexpbot.2015.07.001

Ministerio de Desarrollo Agrario y Riego del Perú. (2021). Sistema integrado de estadísticas agrarias. https://siea.midagri.gob.pe/portal/

Mitani, N., Jian, FM, & Iwashita, T. (2005). Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant and Cell Physiology, 46 (2), 279–283. https://doi.org/10.1093/pcp/pci018

Nikolic, M., Nikolic, N., Liang, Y., Kirkby, E.A., & Romheld, V. (2007). Germanium-68 as an adequate tracer for silicon transport in plants. Characterization of silicon uptake in different crop species. Plant Physiology, 143 (1), 495–503. https://doi.org/10.1104/pp.106.090845

Ning, D., Liang, Y., Liu, Z., Xiao, J., & Duan, A. (2016). Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-immobilization in a paddy soil. PLoS ONE, 11(12), 1–15. https://doi.org/10.1371/journal.pone.0168163

Parra, S., Baca, G., Carrillo, R., Kohashi, J., Martínez, A., & Trejo, C. (2004). Comparison of three methods of analysis of silicon in cucumber leaf tissue. Terra Latinoamericana, 22 (4), 401–407. http://www.redalyc.org/pdf/573/57311096002.pdf

Pati, S., Pal, B., Badole, S., Hazra, G. C., & Mandal, B. (2016). Effect of Silicon Fertilization on Growth, Yield, and Nutrient Uptake of Rice. Communications in Soil Science and Plant Analysis, 47(3), 284–290. https://doi.org/10.1080/00103624.2015.1122797

Paye, W., Tubana, B., Harrell, D., Babu, T., Kanke, Y., & Datnoff, L. (2018). Determination of Critical Soil Silicon Levels for Rice Production in Louisiana Using Different Extraction Procedures. Communications in Soil Science and Plant Analysis, 49(17), 2091–2102. https://doi.org/10.1080/00103624.2018.1495731

Pereira, H. S., Barbosa, N. C., Carneiro, M. A., & Korndörfer, G. H. (2007). Evaluation of sources and extractors of silicon in the soil . Pesquisa Agropecuaria Brasileira, 42 (2), 239–247. https://doi.org/10.1590/S0100-204X2007000200013

R Core Team. (2014). A language and environment for statistical computing. Vienna, Austria. R Foundation for Statistical Computing. https://www.R-project.org

Raven, J. A. (2003). Cycling silicon - The role of accumulation in plants. New Phytologist, 158 (3), 419–421. https://doi.org/10.1046/j.1469-8137.2003.00778.x

Savant, N., Snyder, G., & Datnoff, L. (1997). Silicon management and sustainable rice production. Advances in Agronomy, 58, 151–199. https://doi.org/10.1016/S0065-2113(08)60255-2

Sione, S. M. J., Wilson, M. G., Lado, M., & González, A. P. (2017). Evaluation of soil degradation produced by rice crop systems in a Vertisol, using a soil quality index. Catena, 150, 79–86. https://doi.org/10.1016/j.catena.2016.11.011

Struyf, E., Smis, A., Van Damme, S., Garnier, J., Govers, G., Van Wesemael, B., Conleym D., Batelaan, O., Frot, E., Climans, W., Vandevenne, D., Lancelot, C., Goos, P., & Meire, P. (2010). Historical land use change has lowered terrestrial silica mobilization. Nature Communications, 1 (8), 127-129. https://doi.org/10.1038/ncomms1128

Torres, A., & Lopez, R. (2012). Measuring daily light integral in a greenhouse. Purdue Extension. Purdue University. https://www.extension.purdue.edu/extmedia/ho/ho-238-w.pdf

Wedepohl, K. H. (1995). The composition of the continental crust. In Geochimica et Cosmochimica Acta (pp. 1217–1232). https://doi.org/10.1016/0016-7037(95)00038-2

Wilcox, L. V. (1955). Classification and use of irrigation waters. United States Salinity Laboratory. US Dept. Agr. Circular 969:19. https://www.ars.usda.gov/arsuserfiles/20361500/pdf_pubs/P0192.pdf

Yalda H., Bahmanyar, M. A., Sadegh-zade, F., Emadi, M., & Biparva, P. (2020). Effects of different sources of silicon and irrigation regime on rice yield components and silicon dynamics in the plant and soil. Journal of Plant Nutrition, 43(15), 2322–2335. https://doi.org/10.1080/01904167.2020.1771577

Yamaji, N., Mitani, N., & Ma, J.F. (2008). A Transporter regulating silicon distribution in rice shoots. The Plant Cell Online, 20 (5), 1381–1389. https://doi.org/10.1105/tpc.108.059311

Yoshida, S. (1981). Fundamentals of rice crop science. Los Baños, Philippines: International Rice Research Institute. http://books.irri.org/9711040522_content.pdf

Downloads

Published

2022-04-30

How to Cite

Padilla-Castro, C. F. ., Tomassini-Vidal, L. R. ., & Heros-Aguilar, E. C. . (2022). Three sources of silicon in biomass production of rice (Oryza sativa L.) under controlled conditions. Peruvian Journal of Agronomy, 6(1), 32-52. https://doi.org/10.21704/pja.v6i1.1862