Modification of the flowering dynamics of pineapple (Ananas comosus L.) cv. ‘MD2’ using Aviglycine in the central jungle of Perú
DOI:
https://doi.org/10.21704/pja.v6i1.1863Keywords:
Aviglycine, bloom retardant, growth regulators, natural bloomAbstract
Pineapple (Ananas comosus) is a widely cultivated fruit in tropical countries. However, its natural flowering (NF) is a physiological event that can make harvesting difficult, bringing with it financial problems. Therefore, this study aimed to determine the effect of Aviglycine (AVG) on the flowering of pineapple cv. ‘MD2’ in the central jungle of Peru. Three doses (150 mg/L, 250 mg/L, and 350 mg/L) of AVG (commercial product ReTain 15%) were studied with six and eleven applications. The results confirmed the appearance of NF under Satipo conditions. The high doses of AVG (250 mg/L and 350 mg/L) inhibited the appearance of inflorescences in almost all evaluations and particularly with eleven applications compared with the treatment without AVG and flower induction (NF). The NF presented three periods with different relative rates of inflorescence appearance (RRIA), where the first period had the highest RRIA and longest duration (42 d). In conclusion, the application of AVG had a significant effect in delaying the appearance of inflorescences; thus, its application in pineapple cultivation is recommended. However, more studies are needed to further deepen the knowledge on the management of this growth regulator.
Downloads
References
Amarante, C.V., Simioni, A., Megguer, C.A., & Blum, L. (2002). Effect of aminoethoxyvinilglycine (AVG) on preharvest fruit drop and maturity of apples. Revista Brasileira de Fruticultura, 24(3), 661–664. https://doi.org/10.1590/S0100-29452002000300022
Arruda, L. (2017). Amino-etil-avigliina (avg) na inibição da diferenciação floral natural do abacaxizeiro ‘smooth cayenne’. [Thesis, Universidad Estadual Paulista]. UNESP Repository. https://repositorio.unesp.br/handle/11449/152016
Aubert, B., Gaillard, J., Py, C., Lossois, P., & Marchal, J. (1973). Influence de l’altitude sur le comportement de l’ananas ‘Cayenne Lisse’. Essais au pied du mont Cameroun. Fruits, 28(3), 203–214. https://agritrop.cirad.fr/410537/1/document_410537.pdf
Bartholomew, D.P. (2014). History and perspectives on the role of ethylene in pineapple flowering. Acta Horticulturae (ISHS), 1042, 269–284. https://doi.org/10.17660/ActaHortic.2014.1042.33
Beadle, C. (1993). Growth analysis. In D.O. Hall, J.M.O. Scurlock, R. Bolharnordenkampfh, R.C. Leegood, & S.P. Long (Eds.). Photosynthesis and production in a changing environment: A field and laboratory manual (pp. 36–46). Chapman and Hall. http://www.springer.com/gp/book/9780412429002
Bello, S. (1991). El cultivo de la piña en la selva central del Perú. Programa de Investigación en Cultivos Tropicales INIAA- Serie Técnica. Informe Técnico, 46.
Bello, S., & Julca, A. (1994). Influencia de épocas de plantación, tipos de hijuelos e inducción floral en el crecimiento y desarrollos del cultivo de la piña (Ananas comosus L. Merr.) cv. ‘Samba’ bajo condiciones de Chanchamayo Perú. Proyecto Suelos Tropicales – INIA. Informe Técnico.
Bello, S., & Julca, A. (1995). Influencia de la época de plantación, tipos de material de propagación e inducción floral en el crecimiento y desarrollos del cultivo de la piña (Ananas comosus L. Merr.) cv. ‘Cayena Lisa’ bajo condiciones de la zona de Chanchamayo. Proyecto Suelos Tropicales – INIA. Informe Técnico. 45p.
Borjas-Ventura, R., Julca-Otiniano, A., & Alvarado-Huamán, L. (2020). Las fitohormonas una pieza clave en el desarrollo de la agricultura. Journal of the Selva Andina Biosphere, 8(2), 150–164. https://doi.org/10.36610/J.JSAB.2020.080200150
Centre for Agricultural Bioscience International. (2021). Ananas comosus (pineapple). [Online]. Retrieved from: https://www.cabi.org/isc/datasheet/5392
Chen, L.Y., Chu, C.Y., & Huang, M.C. (2003). Inflorescence and flower development in chinese ixora. Journal of the American Society for Horticultural Science, 128, 23–28. https://doi.org/10.21273/JASHS.128.1.0023
Clayton, M., Biasi, W.V., Southwick, S.M., & Mitcham, E.J. (2000). ReTain affects maturity and ripening of ‘Barlett’ pear. HortScience, 35(7), 1294–1299. https://doi.org/10.21273/HORTSCI.35.7.1294
Collazos, R., Vilca, N., & Rascon, J. (2017). Utilización de fitohormonas para la inducción floral del cultivo de piña (Ananas comosus (L.) Merr.) en el distrito de Santa Rosa, Rodríguez de Mendoza, región Amazonas (Perú). Revista de Investigación de Agroproducción Sustentable, 1(1), 55–62. http://dx.doi.org/10.25127/aps.20171.351
Cunha, G. (2005). Applied aspects of pineapple flowering. Bragantia, 64(4), 499–516. https://doi.org/10.1590/S0006-87052005000400001
Cunha, G., Cabral, J., & Souza, L. (1999). O Abacaxizeiro: cultivo, agroindústria e economia (p. 480). Embrapa.
Cunha, G.A.P. (2009). Fisiologia da floracao do abacaxizeiro. In Carvalho, C. A. L. de; Dantas, A. C. V. L.; Pereira, F. A. de C.; Soares, A. C. F.; Melo Filho, J. F. de; Oliveira, G. J. C. de (Eds.) Tópicos em Ciencias Agrarias, (pp. 56–75). Universidade Federal do Recôncavo da Bahia https://www.embrapa.br/busca-de-publicacoes/-/publicacao/899521/fisiologia-da-floracao-do-abacaxizeiro
Dávila-Velderrain, J., Martinez-Garcia, J.C., & Alvarez-Buylla, E.R. (2016). Dynamic network modelling to understand flowering transition and floral patterning. Journal of Experimental Botany, 67(9), 2565–2572. https://doi.org/10.1093/jxb/erw123
Ecker, J.R., & Davis, R.W. (1987). Plant defense genes are regulated by ethylene. Proceedings of the National Academy of Sciences of the United States of America, 84(15), 5202–5206. https://doi.org/10.1073/pnas.84.15.5202
Food and Agriculture Organization. (2021). Técnica de inducción floral en el cultivo de la piña. [Online]. Retrieved from: http://www.fao.org/3/CA3256ES/ca3256es.pdf
Friend, D.J.C., & Lydon, J. (1979). Effects of daylength on flowering, growth, and CAM of pineapple (Ananas comosus, L., Merril). Botanical Gazette, 140(3), 280–283. https://doi.org/10.1086/337086
Gowing, D.P. (1961). Experiments on the photoperiodic response in pineapple. American Journal of Botany, 48, 16–21. https://doi.org/10.2307/2439589
Hossain, M.F. (2016). World pineapple production: An overview. African Journal of Food, Agriculture, Nutrition and Development, 16(4), 11443–11456. https://doi.org/10.18697/ajfand.76.15620
Ju, Z., Duan, Y., & Ju, Z. (1999). Combinations of GA3 and AVG delay fruit maturation, increase fruit size and improve storage life of ‘Feicheng’ peaches. Journal of Horticultural Science & Biotechnology, 74(5), 579–583. https://doi.org/10.1080/14620316.1999.11511156
Kende, H. (1993). Ethylene biosynthesis. Annual Review of Plant Biology, 44, 283–307. https://doi.org/10.1146/annurev.pp.44.060193.001435
Khan, A., & Ali, A. (2018). Preharvest sprays affecting shelf life and storage potential of fruits. In M. Wasim (Ed.). Preharvest modulation of postharvest fruit and vegetable quality. Academic Press. https://doi.org/10.1016/B978-0-12-809807-3.00009-3
Kuan, C., Yu, C., Lin, M., Hsu, H., & Bartholomew, D. (2005). Foliar application of aviglycine reduces natural flowering in pineapple. Hortscience, 40(1), 123–126. https://doi.org/10.21273/HORTSCI.40.1.123
Loría, D. (2016). Eficacia de aviglicina (Pincor) en la reducción de la floración naturalmente diferenciada (NDF) en piña (Ananas comosus var. comosus) hibrido MD-2 en San Carlos, Costa Rica. [Thesis, Instituto Tecnologico de Costa Rica]. Repository ITCR. https://bit.ly/3cv9GyC
Manriquez, D., Defilippi, B., & Retamales, J. (1999). AVG, an ethylene biosynthesis inhibitor: its effects on ripening and softening in kiwifruit. Acta Horticulturae, 498, 263–268. https://doi.org/10.17660/ActaHortic.1999.498.30
Marca-Huamancha, C., Borjas-ventura, R., Rebaza-Fernández, D., Bello-Amez, S., & Julca-Otiniano, A. (2018). Efecto de la fertilización mineral y de un fertilizante biológico en piña (Ananas comosus L. Merr.) en el cultivar MD2 (Golden). Revista Colombiana de Ciencias Hortícolas, 12(1), 59–68. https://doi.org/10.17584/rcch.2018v12i1.7901
Martin-Prevel, P., Villachica, H., Bello, S., & Julca, A. (1993). Amelioration de la culture de l’ananas en amazonie peruvienne. Programme Cooperation Scientifique Internationale CC/DG.12 Contrat no CI 1 0379(EDB). Rapport Final CIRAD-FLHOR, France, INIA, Pérou. 28p.
Maruthasalam, S., Shiu, L., Loganathan, M., Lien, W., Liu, L., Sun, C., Yu, C., Hung, S., Ko, Y., & Lin, C. (2009). Forced flowering of pineapple (Ananas comosus cv. Tainon 17) in response to cold stress, ethephon and calcium carbide with or without activated charcoal. Journal of Plant Growth Regulation, 60(2), 83–90. https://doi.org/10.1007/s10725-009-9421-9
Mendez, G. (2010). Evaluación preliminar de la floración natural del cultivo de piña (Ananas comosus) Híbrido MD-2, de acuerdo a cuatro zonas altitudinales en la región Huetar norte de Costa Rica. [Thesis, Instituto Tecnológico de Costa Rica]. Repository TEC. https://repositoriotec.tec.ac.cr/handle/2238/2637
Ministerio de Agricultura. (2021). Plan nacional de cultivos, campaña agrícola 2019-202. [Online]. Retrieved from: https://bit.ly/2Sp8RR9
Neri, J., Melendez, J., Vilca, N., Huaman, E., Collazos, R., & Oliva, M. (2021). Effect of planting density on the agronomic performance and fruit quality of three pinneaple cultivar (Ananas comosus L. Merr.). International Journal of Agronomy. https://doi.org/10.1155/2021/5559564
Ohme-Takagi, M., & Shinshi, H. (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant cell, 7(2), 173–182. https://doi.org/10.1105/tpc.7.2.173
Py, C. (1960). Influence de la date de plantation et du poids des rejets sur la croissance des plants d’ananas en Guinée. Fruits, 15(10), 451–453. https://bit.ly/3g7iNYH
Rahim, S., & Othman, N. (2019). Technical efficiency of the pineapple smallholders at Joho: Data envelopment analysis. International Journal of Academic Research in Business and Social Sciences, 9(3), 746–755. https://doi.org/10.6007/IJARBSS/v9-i3/5740
Reinhardt, D., Costa, J., & Cunha, G. (1986). Influência da época de plantio, tamanho da muda e idade da planta para a indução floral do abacaxi ‘Smooth Cayenne’ no Recôncavo Baiano, I. Crescimento vegetativo, produção de mudas e florescimento natural. Fruits, 41(1), 31–41.
Romani, R., Labavitch, J., Yamashita, T., Hess, B., & Rae, H. (1983). Preharvest AVG treatment of ‘Bartlett’ pear fruits: effects on ripening, color change, and volatiles. Journal of the American Society for Horticultural Science, 108(6), 1046–1049.
Shellie, K. (1999). Muskmelon (Cucumis melo L.) fruit ripening and postharvest quality after a preharvest spray of aminoethoxyvinylglycine. Postharvest Biology and Technology, 17(1), 55–62. https://doi.org/10.1016/S0925-5214(99)00022-8
Starrett, D.A., & Laties, G.G. (1991). Involvement of wound and climacteric ethylene in ripening avocado discs. Plant Physiology, 97(2), 720–729. https://doi.org/10.1104/pp.97.2.720
Sun, S., & Frelich, L. (2011). Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species. Journal of Ecology, 99, 991–1000. https://doi.org/10.1111/j.1365-2745.2011.01830.x
Wang, R., Hsu, Y., Bartholomew, D., Maruthasalam, S., & Lin, C. (2007). Delaying natural flowering in pineapple through foliar application of aviglycine, an inhibitor of ethylene biosynthesis. HortScience, 42(5), 1188–1191. https://doi.org/10.21273/HORTSCI.42.5.1188
Yang, S., & Hoffman, N. (1984). Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 35, 155–189. https://doi.org/10.1146/annurev.pp.35.060184.001103
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Segundo Bello-Amez, Ricardo Borjas-Ventura, Leonel Alvarado-Huamán, Noel Bello-Medina, Diana Rebaza-Fernández, Viviana Castro-Cepero, Alberto Julca-Otiniano
This work is licensed under a Creative Commons Attribution 4.0 International License.