Effects of Salinity on three Mandarin Cultivars grafted on two different Rootstocks
DOI:
https://doi.org/10.21704/pja.v6i2.1930Keywords:
Mandarin, Salt stress, rootstocks, ‘Cleopatra’, ‘Swingle citrumelo’Abstract
Citrus, one of the most important fruit crops in the world and also they are sensitive to salt stress. The negative effects of stresses often lead to reductions in fruit yield and quality. To assess the effects of salinity on some growth traits, a greenhouse test was performed with the cultivars ‘Mihowase’, ‘Primosole’ and ‘W. Murcott’ as grafted on ‘Cleopatra’ and ‘Swingle citrumelo’ as rootstocks. The experiment was conducted at the Agrarian Experimental Station of National Institution for Agricultural Innovation in Donoso-Huaral, ubicated 90 km north of Lima. The plants were irrigated with water plus NaCl with an Electrical Conductivity of 0.5 or 4.5 dS/m as salt stress. The variables under evaluation were leave losses, fresh and dry weight of stem, leaves and roots as well as relative water content in the plants. The results showed that the rootstocks ‘Cleopatra’ was more tolerant than ‘Swingle citrumelo’. The cultivars used as scions affected both rootstocks in all the evaluated traits being more notorious in the amount of feeding roots. Selection of mandarin trees for production shout take in consideration the combination scion/rootstock.
Downloads
References
Acosta, J. R., Ortuno, M. F., Bernal, A., Diaz, P., Sanchez, M. J., & Hernandez, J. A. (2017). Plant responses to salat stress: Adaptive mechanims. Agron. Journal, 7(18), 1–38. https://doi.org/10.3390/agronomy7010018
Brito, M., Sonale, K., Dantas, P., Raj, H., Fernandes, J., Dos Santos, W., Soares, A., & Azevedo, D. (2014). Growth of undergrafted and grated citrus rootstocks under saline water irrigation. African Journal of Agricultural Research, 9(50), 3600–3609. https://doi.org/10.5897/2014.9039
Etehadpour, M., Fatahi, R., Zamani, Z., Golein, B., Naghavi, M. R., & Gmitter, F. (2020). Evaluation of the salinity tolerance of Iranian citrus rootstocks using morph-physiological and molecular methods. Sci. Hortic., 261, 109012. https://doi.org/10.1016/j.scienta.2019.109012
Ferguson, L., & S. R. Grattan. (2005). How salinity damages citrus: Osmotic effects and specific ion toxicities. HortTechnology, 15(1), 95–99. https://doi.org/10.21273/HORTTECH.15.1.0095
Farhangi, S., & Torabian, S. (2017). Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol. Environ., 137, 64–70. https://10.1016/j.ecoenv.2016.11.029
Garcia, M. R., Bernet, G. P., Puchades, J., Gomes, I., Cabonell, E. A., & Asins, M. J. (2016). Reliable and easy screening technique for salt tolerance of citrus rootstock under controlled environment. Austral. J. Agr. Res., (53), 653–662. https://doi.org/10.1071/AR01071
Gonzales, D. (2017). Patrones y variedades de cítricos. Un recorrido histórico [Master thesis, Universidad Miguel Hernández de Elche].
Hasanuzzaman, M., Hossain, M., Chowdhury, A., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int. J. Mol. Sci., 22(17), 9326. https://doi.org/10.3390/ijms22179326
Khoshbakht, D., Asghari, M., & Haghighi, M. (2018). Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica, 56, 1313–1325. https://doi.org/10.1007/s11099-018-0839-z
Lauchli, A., & Epstein, F. (1990). Plant responses to saline and sodic conditions. In K. K. Tanj (Ed.), Agricultural salinity assessment and management (pp.113–137). ASCE Manual and Rpts. on Eng. Practice Nº 71 Amer. Soc. Chem. Eng.
Mahmoud, L., Dutt, M., Vicent, Ch. I., & Grosser, J. D. (2020). Salinity-induced Physiological Responses of Three Putative Salt Tolerant Citrus Rootstocks. Horticulturae 6(4) 90–94. https://doi:10.3390/horticulturae6040090
Navarro, J., Lopez, A., Garcia, B., Andujar, J., Tallon, C., & Porras, I. (2010). Estudios de la respuesta a la salinidad de diferentes patrones de cítricos. XII Congreso Iberico de Horticultura. Actas, 112-115
Rodrigues, M. J. Da S., Romero, A., Sebastiao, E., Dos Santos, W., Giraldi, E. A., Saraiva L., & Oliveira. U. (2019). Performance of ‘Valencia’ sweet orange grafted onto rootstocks in the state of Acre. Brazil. Pesq. Agropec. Bras., (54), 56–62. https://doi.org/10.1590/S1678-3921.pab2019.v54.01349
Simpson C.R., Nelson, S., Melgar, J., Jifon, J., Schuster G., & Volder. A. (2014). Growth response of grated and ungrafted citrus trees to saline irrigation. Sci. Horticult. 169, 199–205. https://doi/10.1016/J.SCIENTA.2014.02.020
Siddiqui, H., Hayat, S., & Bajguz, A. (2018). Regulation of photosynthesis by brassinosteroids in plants. Acta Physiol Plant, 40(3), 59. https://doi.org/10.1007/s11738-018-2639-2
Syvertsen, J. P, Lloyd J. & Riedmann, E. (1988). Salinity and drought effects on foliar ion concentration, water relation, and photosynthetic characteristics of orchard citrus. Australian Journal of Agricultural Research, 39, 619–627
Vardi. A., Spiegel-Roy R., Ben Hayim, G., Neumann, H., & Shalhevet, J. (1988). Response of Shamouti orange and Minneola tangelo on six rootstocks to salt stress. Proc. 6th Intl. Citrus Congr., 1,188-192
Ziogas, V., Tanau, G., Morianou, G., Kourgialas, N., & Kourgialas, N. (2021). Drought and Salinity in Citriculture. Optimal Practices to alleviate salinity and Water Stress. Agronomy, 11(7), 1 – 15. https://doi.org/10.3390/agronomy11071283
Zahra, N., Ali, Z., & Mahmood, S. (2020). Effect of salinity stress on various growth and physiological attributes of two contrastring maize genotypes. Agriculture, Agribusiness and Biotechnology, 63, 1-10. http://doi.org/10.1590/1678-4324-2020200072
Downloads
Published
Issue
Section
License
Copyright (c) 2022 R. Velásquez, C. Burga, L. Vargas
This work is licensed under a Creative Commons Attribution 4.0 International License.