Exploring the potential of Salicornia: A halophyte’s impact on Agriculture, the Environment, and the Economy
DOI:
https://doi.org/10.21704/pja.v7i3.1991Keywords:
Salicornia applications, Halophytic plant, Environmental management, Biomass, Salinity, Food Plant, Salt toleranceAbstract
Salicornia, a halophytic plant, garners attention for its environmental, energy, medicinal, and economic potential. It excels in environmental management through phytoremediation and carbon sequestration, thriving in saline environments to filter toxins and recycle nutrients. As a biofuel source, its oil-rich seeds and high biomass yield offer eco-friendly alternatives for biodiesel and bioethanol production, mitigating greenhouse gas emissions. Salicornia’s bioactive compounds exhibit significant potential in modulating the immune system and managing various diseases. Despite challenges such as production costs and regulatory barriers, Salicornia holds promise as a sustainable crop with diverse commercial applications. Scaling up Salicornia production and utilization requires addressing challenges related to cultivar development, production costs, and regulatory frameworks. However, with continued research and investment, Salicornia could emerge as a valuable resource for addressing food security, energy sustainability, and environmental restoration. Future research directions include exploring Salicornia’s nutritional composition, environmental sustainability, and epigenetic mechanisms, as well as optimizing extraction methods and intercropping systems. Understanding these aspects will contribute to unlocking Salicornia’s full potential as a versatile crop with wide-ranging benefits for human health, environmental conservation, and economic development.
Downloads
References
Abdal, M. S. (2009). Salicornia production in Kuwait. World Applied Sciences Journal, 6(8), 1033–1038.
Abideen, Z., Qasim, M., Rizvi, R. F., Gul, B., Ansari, R., & Khan, M. A. (2015). Oilseed halophytes: A potential source of biodiesel using saline degraded lands. Biofuels, 6(5–6), 241–248. https://doi.org/10.1080/17597269.2015.1090812
Ahmadzai, H., Tutundjian, S., & Elouafi, I. (2021). Policies for sustainable agriculture and livelihood in marginal lands: a review. Sustainability, 13(16), 8692. https://doi.org/10.3390/su13168692
Alfarrah, N., & Walraevens, K. (2018). Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water, 10(2), 143. https://doi.org/10.3390/w10020143
Alfheeaid, H. A., Raheem, D., Ahmed, F., Alhodieb, F. S., Alsharari, Z. D., Alhaji, J. H., ... & Raposo, A. (2022). Salicornia bigelovii, S. brachiata and S. herbacea: Their Nutritional Characteristics and an Evaluation of Their Potential as Salt Substitutes. Foods, 11(21), 3402. https://doi.org/10.3390/foods11213402
Al-Rashed, S. A., Ibrahim, M. M., Hatata, M. M., & El-Gaaly, G. A. (2016). Biodiesel production and antioxidant capability from seeds of Salicornia bigelovii collected from Al Jubail, Eastern province, Saudi Arabia. Pak. J. Bot, 48(6), 2527–2533.
Al-Yamani, W., Kennedy, S., Sgouridis, S., & Yousef, L. F. (2013). A land suitability study for the sustainable cultivation of the halophyte Salicornia bigelovii: the case of Abu Dhabi, UAE. Arid land research and management, 27(4), 349–360. https://doi.org/10.1080/15324982.2013.771230
Bailis, R., & Yu, E. (2012). Environmental and social implications of integrated seawater agriculture systems producing Salicornia bigelovii for biofuel. Biofuels, 3(5), 555–574. https://doi.org/10.4155/bfs.12.50
Bañuelos, J. A., Valdez-Hernández, I., Guerra-Balcázar, M., & Arjona, N. (2018). Production, characterization and evaluation of the energetic capability of bioethanol from Salicornia bigelovii as a renewable energy source. Renewable Energy, 123, 125–134. https://doi.org/10.1016/j.renene.2018.02.031
Barreto, G. D. M., Fernandes, J. G., Tabosa, J. N., & Messias, A. S. (2020). Evaluation of the Consortium with Salicornia Neei for use in the Semi-Arid of Pernambuco. III-Pennisetum Glaucum L.(Millet). International Journal of Research Studies in Science, Engineering and Technology, 7(4), 01–08.
Bashan, Y., Moreno, M., & Troyo, E. (2000). Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biology and Fertility of Soils, 32, 265–272. https://doi.org/10.1007/s003740000246
Sharma, V., Joshi, A., Ramawat, K. G., & Arora, J. (2017). Bioethanol Production from Halophytes of Thar Desert: A “Green Gold”. In S.K. Basu, P. Zandi & S.K. Chalaras (Eds.), Environment at Crossroads: Challenges, Dynamics and Solutions (pp. 633–666). Springer International Publishing. https://doi.org/10.1007/978-3-319-54528-8_25
Belasari, D., Alboainain, S., Bastidas-Oyanedel, J. R., & Schmidi, J. E. (2015). Assessment of biofuel potential from Agave spp. and Salicornia in the arid Emirate of Abu Dhabi. Advances in Environmental and Agricultural Science, 1(2), 144–148. https://www.researchgate.net/publication/280233024
Berkes, F. (2000). Indigenous knowledge and resource management systems in the Canadian subarctic (pp. 98–128). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Brown, J.J. (2019). Considerations for Producing Bioenergy from Halophyte Feedstocks. In: JR. Bastidas-Oyanedel, J. Schmidt, (eds) Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-030-10961-5_28
Cárdenas-Pérez, S., Piernik, A., Chanona-Pérez, J. J., Grigore, M. N., & Perea-Flores, M. J. (2021). An overview of the emerging trends of the Salicornia L. genus as a sustainable crop. Environmental and Experimental Botany, 191, 104606. https://doi.org/10.1016/j.envexpbot.2021.104606
Castagna, A., Mariottini, G., Gabriele, M., Longo, V., Souid, A., Dauvergne, X., ... & Ranieri, A. (2022). Nutritional Composition and Bioactivity of Salicornia europaea L. Plants Grown in Monoculture or Intercropped with Tomato Plants in Salt-Affected Soils. Horticulturae, 8(9), 828. https://doi.org/10.3390/horticulturae8090828
Cayenne, A., Turcios, A. E., Thomsen, M. H., Rocha, R. M., Papenbrock, J., & Uellendahl, H. (2022). Halophytes as Feedstock for Biogas Production: Composition Analysis and Biomethane Potential of Salicornia spp. Plant Material from Hydroponic and Seawater Irrigation Systems. Fermentation, 8(4), 189. https://doi.org/10.3390/fermentation8040189
Chaturvedi, T., Christiansen, A. H. C., Gołębiewska, I., & Thomsen, M. H. (2021). Salicornia species: current status and future potential. In T. Chaturvedi & A. H. C. Christiansen (Eds.), Future of Sustainable Agriculture in Saline Environments (pp. 427–449). CRC Press. https://doi.org/10.1201/9781003112327-31
Chrigui, S., Hadj Taieb, S., Jemai, H., Mbarek, S., Benlarbi, M., Feki, M., ... & Boudhrioua, N. (2023). Anti-Obesity and Anti-Dyslipidemic Effects of Salicornia arabica Decocted Extract in Tunisian Psammomys obesus Fed a High-Calorie Diet. Foods, 12(6), 1185. https://doi.org/10.3390/foods12061185
Cristina, C., Lucia, P., Sara, S., Francesco, S., Nobile Matteo Alessandro, D., & Amalia, C. (2018). Study of the Efficacy of Two Extraction Techniques from Crithmum maritimum and Salicornia europaea. Journal of Food and Nutrition Research, 6(7), 456–463. https://doi.org/10.12691/jfnr-6-7-6
Custódio, M., Lillebø, A. I., Calado, R., & Villasante, S. (2021). Halophytes as novel marine products–A consumers’ perspective in Portugal and policy implications. Marine Policy, 133, 104731. https://doi.org/10.1016/j.marpol.2021.104731
Davy, A. J., Bishop, G. F., & Costa, C. S. B. (2001). Salicornia L. (Salicornia pusilla J. woods, S. ramosissima J. woods, S. europaea L., S. obscura PW ball & tutin, S. nitens PW ball & tutin, S. fragilis PW ball & tutin and S. dolichostachya moss). Journal of Ecology, 89(4), 681–707. https://doi.org/10.1046/j.1365-2745.2001.00605.x
Duarte, B., & Caçador, I. (2021). Iberian halophytes as agroecological solutions for degraded lands and biosaline agriculture. Sustainability, 13(2), 1005. https://doi.org/10.3390/su13021005
Essaidi, I., Brahmi, Z., Snoussi, A., Koubaier, H. B. H., Casabianca, H., Abe, N., ... & Bouzouita, N. (2013). Phytochemical investigation of Tunisian Salicornia herbacea L., antioxidant, antimicrobial and cytochrome P450 (CYPs) inhibitory activities of its methanol extract. Food Control, 32(1), 125–133. https://doi.org/10.1016/j.foodcont.2012.11.006
Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J., Fischhoff, D. A., Hodges, C. N., ... & Zhu, J. K. (2010). Radically rethinking agriculture for the 21st century. science, 327(5967), 833–834. https://doi.org/10.1126/science.1186834
Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179(4), 945–963. https://doi.org/10.1111/j.1469-8137.2008.02531.x
Folayan, A. J., Anawe, P. A. L., & Ayeni, A. O. (2019). Synthesis and characterization of Salicornia bigelovii and Salicornia brachiata halophytic plants oil extracted by supercritical CO2 modified with ethanol for biodiesel production via enzymatic transesterification reaction using immobilized Candida antarctica lipase catalyst in tert-butyl alcohol (TBA) solvent. Cogent Engineering, 6(1), 1619307. https://doi.org/10.1080/23311916.2019.1625847
Friess, D. A., Yando, E. S., Alemu I, J. B., Wong, L.-W., Soto, S. D., & Bhatia, N. (2020). Ecosystem services and disservices of mangrove forests and salt marshes. In S. J. Hawkins, A. L. Allcock, A. E. Bates, L. B. Firth, I. P. Smith, S. E. Swearer, A. J. Evans, P. A. Todd, B. D. Russell, & C. D. McQuaid (Eds.), Oceanography and marine biology: An annual review (pp. 107–141). Taylor & Francis.
Garza-Torres, R., Troyo-Diéguez, E., Nieto-Garibay, A., Lucero-Vega, G., Magallón-Barajas, F. J., García-Galindo, E., & Murillo-Amador, B. (2020). Environmental and Management Considerations for Adopting the Halophyte Salicornia bigelovii Torr. as a Sustainable Seawater-Irrigated Crop. Sustainability, 12(2), 707. https://doi.org/10.3390/su12020707
Glenn, E. P., Anday, T., Chaturvedi, R., Martinez-Garcia, R., Pearlstein, S., Soliz, D., ... & Felger, R. S. (2013). Three halophytes for saline-water agriculture: An oilseed, a forage and a grain crop. Environmental and Experimental Botany, 92, 110–121. https://doi.org/10.1016/j.envexpbot.2012.05.002
Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical reviews in plant sciences, 18(2), 227–255. https://doi.org/10.1080/07352689991309207
Glenn, E. P., Brown, J. J., & O’Leary, J. W. (1998). Irrigating crops with seawater. Scientific American, 279(2), 76–81.
Gouda, M. S., & Elsebaie, E. M. (2016). Glasswort (Salicornia spp) as a source of bioactive compounds and its health benefits: a review. Alex J Fd Sci Technol, 13(1), 1–7. https://doi.org/10.12816/0038461
Grigore, M. N., Ivănescu, L., & Toma, C. (2014). Halophytes. An integrative anatomical study. Springer
Grigore, M. N., & Vicente, O. (2023). Wild Halophytes: Tools for Understanding Salt Tolerance Mechanisms of Plants and for Adapting Agriculture to Climate Change. Plants, 12(2), 221. https://doi.org/10.3390/plants12020221
Guil, J. L., Rodríguez-Garcí, I., & Torija, E. (1997). Nutritional and toxic factors in selected wild edible plants. Plant Foods for Human Nutrition, 51(2), 99–107. https://doi.org/10.1023/A:1007988815888
Gunning, D. (2016). Cultivating Salicornia europaea (marsh samphire). Dublin, Ireland: Irish Sea Fisheries Board, 4, 1-95.
Hamed, K. B., Castagna, A., Ranieri, A., Garcia-Caparros, P., Santin, M., Hernandez, J. A., & Espin, G. B. (2021). Halophyte based Mediterranean agriculture in the contexts of food insecurity and global climate change. Environmental and Experimental Botany, 191, 104601. https://doi.org/10.1016/j.envexpbot.2021.104601
Hasanuzzaman, M., Nahar, K., Alam, M., Bhowmik, P. C., Hossain, M., Rahman, M. M., & Fujita, M. (2014). Potential use of halophytes to remediate saline soils. BioMed research international, 2014. https://doi.org/10.1155/2014/589341
Holguin Peña, R. J., Medina Hernandez, D., Ghasemi, M., & Rueda Puente, E. O. (2021). Salt tolerant plants as a valuable resource for sustainable food production in arid and saline coastal zones. Acta Biológica Colombiana, 26(1), 116–126. https://doi.org/10.15446/abc.v26n1.82412
Hulkko, L. S., Turcios, A. E., Kohnen, S., Chaturvedi, T., Papenbrock, J., & Thomsen, M. H. (2022). Cultivation and characterisation of Salicornia europaea, Tripolium pannonicum and Crithmum maritimum biomass for green biorefinery applications. Scientific Reports, 12(1), 20507. https://doi.org/10.1038/s41598-022-24865-4
Im, S. A., Kim, K., & Lee, C. K. (2006). Immunomodulatory activity of polysaccharides isolated from Salicornia herbacea. International immunopharmacology, 6(9), 1451–1458. https://doi.org/10.1016/j.intimp.2006.04.011
Ismail, S., Rao, N. K., & Dagar, J. C. (2019). Identification, evaluation, and domestication of alternative crops for saline environments. Research developments in saline agriculture, 505–536. https://doi.org/10.1007/978-981-13-5832-6_17
Javid, U., Almardeai, S., Bastidas-Oyanedel, J. R., & Schmidt, J. E. (2016). Biomethane Potential of Salicornia Sinus-Persica at Seawater Conditions. Int. J. of Sustainable Water & Environmental Systems, 8(1), 1–10. https://doi.org/10.5383/swes.8.01.001
Jefferies, R. L., & Gottlieb, L. D. (1982). Genetic Differentiation of the Microspecies Salicornia europaea L.(Sensu stricto) and S. ramosissima, J. Woods. New Phytologist, 92(1), 123–129. https://doi.org/10.1111/j.1469-8137.1982.tb03368.x
Joshi, A., Kanthaliya, B., & Arora, J. (2020). Halophytes: The nonconventional crops as source of biofuel production. Handbook of Halophytes: From Molecules to Ecosystems towards Biosaline Agriculture, 1–28. https://doi.org/10.1007/978-3-030-17854-3_126-1
Kadereit, G., Ball, P., Beer, S., Mucina, L., Sokoloff, D., Teege, P., Yaprak, A. E. & Freitag, H. (2007). A taxonomic nightmare comes true: phylogeny and biogeography of glassworts (Salicornia L., Chenopodiaceae). Taxon, 56(4), 1143–1170. https://doi. org/10.2307/25065909
Kang, S., Kim, M. R., Chiang, M., & Hong, J. (2015). Evaluation and comparison of functional properties of freshwater-cultivated glasswort (Salicornia herbacea L.) with naturally-grown glasswort. Food Sci. Biotechnol., 24, 2245–2250. https://doi.org/10.1007/s10068-015-0299-1
Kim, Y. A., Kong, C. S., Um, Y. R., Lim, S. Y., Yea, S. S., & Seo, Y. (2009). Evaluation of Salicornia herbacea as a potential antioxidant and anti-inflammatory agent. Journal of Medicinal Food, 12(3), 661–668. https://doi.org/10.1089/jmf.2008.1072
Kim, H. W., Hwang, K. E., Song, D. H., Kim, Y. J., Ham, Y. K., Yeo, I. J., ... & Kim, C. J. (2014). Effects of red and green glassworts (Salicornia herbacea L.) on physicochemical and textural properties of reduced-salt cooked sausages. Korean journal for food science of animal resources, 34(3), 378. https://doi.org/10.5851/kosfa.2014.34.3.378
Kim, E., Chang, Y. H., Ko, J. Y., & Jeong, Y. (2013). Physicochemical and microbial properties of the Korean traditional rice wine, Makgeolli, supplemented with banana during fermentation. Preventive nutrition and food science, 18(3), 203. https://doi.org/10.3746%2Fpnf.2013.18.3.203
Kong, C. S., & Seo, Y. (2012). Antiadipogenic activity of isohamnetin 3-O-β-D-glucopyranoside from Salicornia herbacea. Immunopharmacology and Immunotoxicology, 34(6), 907–911. https://doi.org/10.3109/08923973.2012.670643
Kudo, N., & Fujiyama, H. (2010). Responses of halophyte Salicornia bigelovii to different forms of nitrogen source. Pedosphere, 20(3), 311–317. https://doi.org/10.1016/S1002-0160(10)60019-7
Kumar, A., Abraham, E., & Gupta, A. (2018). Alternative biomass from saline and semiarid and arid conditions as a source of biofuels: Salicornia. Biofuels: Greenhouse Gas Mitigation and Global Warming: Next Generation Biofuels and Role of Biotechnology, 229–240. https://doi.org/10.1007/978-81-322-3763-1_13
Laveille, P., Uratani, J., Barron, J. G., Brodeur‐Campbell, M., Chandak, N. R., George, A., & Berthod, M. (2022). Sustainable pilot‐scale production of a Salicornia oil, its conversion to certified aviation fuel, and techno‐economic analysis of the related biorefinery. Biofuels, Bioproducts and Biorefining, 16(1), 27–42. https://doi.org/10.1002/bbb.2366
Lei, Li, J., Li, L., & Wu, L. (2018). Effect of Phragmites communis on salt modification in salinealkaline soil. IOP Conference Series: Earth and Environmental Science, 170(3), 032086. https://doi.org/10.1088/1755-1315/170/3/032086
Li, Q., Zhang, Q., Wang, C., Liu, X., Li, N., & Li, J. (2009). Disruption of tight junctions during polymicrobial sepsis in vivo. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 218(2), 210–221. https://doi.org/10.1002/path.2525
Liang, L., Liu, W., Sun, Y., Huo, X., Li, S., & Zhou, Q. (2017). Phytoremediation of heavy metal contaminated saline soils using halophytes: current progress and future perspectives. Environmental Reviews, 25(3), 269–281. https://doi.org/10.1139/er-2016-0063
Lieth, H. (2000). Cashcrop halophytes for future halophyte growers. EU concerted action project IC 18CT96-0055, final meeting at the beginning of the EXPO 2000. Institute of Environmental Systems Research, University of Osnabrück, Germany. ISSN 09336-3114, No. 20.
Lin Z.-Q., Schemenauer R. S., Cervinka V., Zayed A., Lee A., Terry N. (2000) Selenium volatilization from a soil–plant system for the remediation of contaminated water and soil in the San Joaquin Valley. J. Environ Qual, 29, 1048–1056. https://doi.org/10.2134/jeq2000.00472425002900040003x
Loconsole, D., Cristiano, G., & De Lucia, B. (2019). Glassworts: from wild salt marsh species to sustainable edible crops. Agriculture, 9(1), 14. https://doi.org/10.3390/agriculture9010014
Lu, D., Zhang, M., Wang, S., Cai, J., Zhou, X., & Zhu, C. (2010). Nutritional characterization and changes in quality of Salicornia bigelovii Torr. during storage. LWT-Food Science and Technology, 43(3), 519–524. https://doi.org/10.1016/j.lwt.2009.09.021
Luo, S., Tian, L., Chang, C., Wang, S., Zhang, J., Zhou, X., Li, X., Tran, L. & Tian, C. (2018). Grass and maize vegetation systems restore saline‐sodic soils in the Songnen Plain of northeast China. Land Degradation & Development, 29(4), 1107–1119. https://doi.org/10.1002/ldr.2895
Lv, S., Jiang, P., Chen, X., Fan, P., Wang, X., & Li, Y. (2012). Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiology and Biochemistry, 51, 47–52. https://doi.org/10.1016/j.plaphy.2011.10.015
Lyra, D. A., Al-Shihi, R. M. S., Nuqui, R., Robertson, S. Μ., Christiansen, A., Ramachandran, S., ... & Al-Zaabi, A. M. (2019). Multidisciplinary studies on a pilot coastal desert modular farm growing Salicornia bigelovii in United Arab Emirates. Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes, 327–345. https://doi.org/10.1007/978-981-13-3762-8_16
Lyra, D. A., Lampakis, E., Al Muhairi, M., Tarsh, F. M. B., Dawoud, M. A. H., Al Khawaldeh, B., ... & Abou Dahr, W. A. (2021). From desert farm to fork: Value chain development for innovative Salicornia-based food products in the United Arab Emirates. Future of sustainable agriculture in saline environments (pp. 181–200). CRC Press.
Martins, C. I. M., Eding, E. H., Verdegem, M. C., Heinsbroek, L. T., Schneider, O., Blancheton, J. P., ... & Verreth, J. A. J. (2010). New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacultural engineering, 43(3), 83–93. https://doi.org/10.1016/j.aquaeng.2010.09.002
Mishra, A., Patel, M. K., & Jha, B. (2015). Non-targeted metabolomics and scavenging activity of reactive oxygen species reveal the potential of Salicornia brachiata as a functional food. Journal of Functional Foods, 13, 21–31. https://doi.org/10.1016/j.jff.2014.12.027
Munir, N., Abideen, Z., & Sharif, N. (2020). Development of halophytes as energy feedstock by applying genetic manipulations. Frontiers in Life Science, 13(1), 1–10. https://doi.org/10.1080/21553769.2019.1595745
Ozturk, M., Altay, V., Orçen, N., Yaprak, A. E., Tuğ, G. N., & Güvensen, A. (2018). A little-known and a little-consumed natural resource: Salicornia. Global perspectives on underutilized crops, 83–108. https://doi.org/10.1007/978-3-319-77776-4_3
Parida, A. K., Kumari, A., Rangani, J., & Patel, M. (2019). Halophytes: potential resources of coastal ecosystems and their economic, ecological and bioprospecting significance. Halophytes and climate change: adaptive mechanisms and potential uses (pp. 287–323). Wallingford UK: CABI.
Patel, S. (2016). Salicornia: evaluating the halophytic extremophile as a food and a pharmaceutical candidate. 3 Biotech, 6(1), 104. https://doi.org/10.1007/s13205-016-0418-6
Reyes-García, V., Aceituno-Mata, L., Calvet-Mir, L., Garnatje, T., Gomez-Baggethun, E., Lastra, J. J., ... & Pardo-de-Santayana, M. (2014). Resilience of traditional knowledge systems: The case of agricultural knowledge in home gardens of the Iberian Peninsula. Global Environmental Change, 24, 223–231. https://doi.org/10.1016/j.gloenvcha.2013.11.022
Robertson, S. M., Lyra, D. A., Mateo-Sagasta, J., Ismail, S., & Akhtar, M. J. U. (2019). Financial analysis of halophyte cultivation in a desert environment using different saline water resources for irrigation. Ecophysiology, Abiotic Stress Responses and Utilization of Halophytes, 347–364. https://doi.org/10.1007/978-981-13-3762-8_17
Ryu, D.-S., Kim, S.-H., & Lee, D.-S. (2009). Anti-proliferative effect of polysaccharides from Salicornia herbacea on induction of G2/M arrest and apoptosis in human colon cancer cells. Journal of Microbiology and Biotechnology, 19(11), 1482–1489. https://doi.org/10.4014/jmb.0902.0063
Sardo, V. (2005). Halophytes and salt-tolerant glycophytes: a potential resource. The Use of non-Conventional Water Resources; CIHEAM/EU DG Research: Bari, Italy, 87–98.
Seo, H. N., Jeon, B. Y., Yun, A. R., & Park, D. H. (2010). Effect of glasswort (Salicornia herbacea L.) on microbial community variations in the vinegar-making process and vinegar characteristics. Journal of Microbiology and Biotechnology, 20(9), 1322–1330. https://doi.org/10.4014/jmb.1003.03041
Sharma, R., Wungrampha, S., Singh, V., Pareek, A., & Sharma, M. K. (2016). Halophytes as bioenergy crops. Frontiers in Plant Science, 7, 1372. https://doi.org/10.3389/fpls.2016.01372
ShenavaeiZare, T., Khoshsima, A., & ZareNezhad, B. (2021). Development of surfactant-free microemulsion hybrid biofuels employing halophytic Salicornia oil/ethanol and oxygenated additives. Fuel, 292, 120249. https://doi.org/10.1016/j.fuel.2021.120249
Shin, M. G., & Lee, G. H. (2013). Spherical granule production from micronized saltwort (Salicornia herbacea) powder as salt substitute. Preventive nutrition and food science, 18(1), 60. https://doi.org/10.3746%2Fpnf.2013.18.1.060
Silva, Y. J., Silva, Y. J., Freire, M. B., Lopes, E. A., & Santos, M. A. (2016). Atriplex nummularia Lindl. as alternative for improving salt-affected soils conditions in semiarid environments: a field experiment. Chilean Journal of Agricultural Research, 76(3), 343–348. https://doi.org/10.4067/S0718-58392016000300012
Singh, D., Buhmann, A. K., Flowers, T. J., Seal, C. E., & Papenbrock, J. (2014). Salicornia as a crop plant in temperate regions: selection of genetically characterized ecotypes and optimization of their cultivation conditions. AoB Plants, 6, plu071. https://doi.org/10.1093/aobpla/plu071
Song, J., & Wang, B. (2015). Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Annals of Botany, 115(3), 541–553. https://doi.org/10.1093/aob/mcu194
Srivarathan, S., Phan, A. D. T., Hong, H. T., Netzel, G., Wright, O. R., Sultanbawa, Y., & Netzel, M. E. (2023). Nutritional composition and anti-nutrients of underutilized Australian indigenous edible halophytes–Saltbush, Seablite and Seapurslane. Journal of Food Composition and Analysis, 115, 104876. https://doi.org/10.1016/j.jfca.2022.104876
Stanley, O. D. (2008). Bio prospecting marine halophyte Salicornia brachiata for medical importance and salt encrusted land development. Journal of Coastal Development, 11(2), 62–69.
Ten Dam, R., Vellinga, P., & Negacz, K. (2023). From experiment to market development: A case study of prospects and value chain of saline agriculture in Terschelling, the Netherlands. NJAS: Impact in Agricultural and Life Sciences, 95(1), 2211541. https://doi.org/10.1080/27685241.2023.2211541
Tóth, T., Balog, K., Szabo, A., Pásztor, L., Jobbágy, E. G., Nosetto, M. D., & Gribovszki, Z. (2014). Influence of lowland forests on subsurface salt accumulation in shallow groundwater areas. AoB Plants, 6, plu053. https://doi.org/10.1093/aobpla/plu054
Turcios, A. E., & Papenbrock, J. (2014). Sustainable treatment of aquaculture effluents—what can we learn from the past for the future?. Sustainability, 6(2), 836–856. https://doi.org/10.3390/su6020836
Turcios, A. E., Cayenne, A., Uellendahl, H., & Papenbrock, J. (2021). Halophyte plants and their residues as feedstock for biogas production—Chances and challenges. Applied Sciences, 11(6), 2746. https://doi.org/10.3390/app11062746
Ventura, Y., & Sagi, M. (2013). Halophyte crop cultivation: the case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 92, 144–153. https://doi.org/10.1016/j.envexpbot.2012.07.010
Ventura, Y., Wuddineh, W. A., Myrzabayeva, M., Alikulov, Z., Khozin-Goldberg, I., Shpigel, M., & Sagi, M. (2011). Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Scientia Horticulturae, 128(3), 189–196. https://doi.org/10.1016/j.scienta.2011.02.001
Volkov, V. (2015). Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. Frontiers in Plant Science, 6, 873. https://doi.org/10.3389/fpls.2015.00873
Wafa’a, A. (2010). The relation between phenotypic plasticity of Senecio glaucus L. and some soil factors. Australian Journal of Basic and Applied Sciences, 4(6), 1369–1375.
Waller, U., Buhmann, A. K., Ernst, A., Hanke, V., Kulakowski, A., Wecker, B., ... & Papenbrock, J. (2015). Integrated multi-trophic aquaculture in a zero-exchange recirculation aquaculture system for marine fish and hydroponic halophyte production. Aquaculture international, 23, 1473–1489. https://doi.org/10.1007/s10499-015-9898-3
Warshay, B., Pan, J., & Sgouridis, S. (2011). Aviation industry’s quest for a sustainable fuel: considerations of scale and modal opportunity carbon benefit. Biofuels, 2(1), 33–58. https://doi.org/10.4155/bfs.10.70
Yadav, P., Priyanka, P., Kumar, D., Yadav, A., & Yadav, K. (2019). Bioenergy Crops: Recent advances and future outlook. Prospects of Renewable Bioprocessing in Future Energy Systems, 315–335. https://doi.org/10.1007/978-3-030-14463-0_12
Yensen, N. P. (2006). Halophyte uses for the twenty-first century. In Ecophysiology of high salinity tolerant plants (pp. 367–396). Springer Netherlands. https://doi.org/10.1007/1-4020-3702-0_14
Yozzo, D. J., Clark, R., Curwen, N., Graybill, M. R., Reid, P., Rogal, K., ... & Tilbrook, C. (2000). Managed retreat: assessing the role of the human community in habitat restoration projects in the United Kingdom. Ecological Restoration, 18(4), 234–242. https://doi.org/10.3368/er.18.4.234
Zhang, S., Wei, M., Cao, C., Ju, Y., Deng, Y., Ye, T., Xia, Z., & Chen, M. (2015). Effect and mechanism of Salicornia bigelovii Torr. plant salt on blood pressure in SD rats. Food & function, 6(3), 920–926.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Shambhu Katel, Shubh Pravat Singh Yadav, Sangam Oli, Roshani Adhikari, Shreeya Shreeya
This work is licensed under a Creative Commons Attribution 4.0 International License.