INTERACCIÓN GENOTIPO AMBIENTE EN ESTRÉS TÉRMICO Y PRODUCCIÓN DE LECHE EN VACAS HOLSTEIN EN LA REGIÓN DE LIMA, PERÚ

Autores/as

  • Alberto Menendez-Buxadera Departamento de Genética, Universidad de Córdova, Córdoba, España. https://orcid.org/0000-0002-0408-4200
  • Manuel More Montoya Facultad de Ciencias Agrarias, Universidad Nacional de San Antonio Abad del Cusco, Cusco, Perú. https://orcid.org/0000-0001-8677-993X
  • Gustavo Gutiérrez-Reynoso Facultad de Zootecnia, PIPS Mejoramiento Animal, Universidad Nacional Agraria La Molina, Lima, Perú. https://orcid.org/0000-0002-1896-0048
  • Gerardo Galván Cavero Facultad de Zootecnia, PIPS Mejoramiento Animal, Universidad Nacional Agraria La Molina, Lima, Perú https://orcid.org/0000-0002-4079-0209

DOI:

https://doi.org/10.21704/ac.v83i2.1902

Palabras clave:

Vacas Holstein, producción láctea , estrés térmico, correlaciones genéticas, interacción genotipo ambiente

Resumen

Un total de 352596 resultados de los controles periódicos de producción (TD), así como así las variables climáticas de Temperatura y Humedad Relativa combinadas en un índice conocido como ITH, realizados en 5 establos de la región de Lima, entre enero del 2006 y diciembre del 2018, estuvieron disponibles para este estudio. Esta base de datos estaba representada los TD de 11876 vacas Holstein hijas de 8439 madres y 321 sementales y fue estudiada por diferentes modelos de regresión aleatoria con el objetivo de estimar las relaciones genéticas entre TD y el ITH como indicador de estrés térmico (ST). Los resultados indicaron que la heredabilidad (h2 ), a lo largo de la escala de ITH manifiesta una tendencia ligeramente ascendente (h2 = 0,113±0,01 a 0,187±0,02) hasta alcanzar sus mayores valores en la denominada zona de estrés térmico (ITH>=68 a ITH=77). Las correlaciones genéticas (rg) fueron cercanos a la unidad entre niveles de ITH adyacentes o muy cercanos y disminuye en la medida que se incrementa las diferencias entre la intensidad de ST medida por los ITH, alcanzando resultados entre rg= 0,562±0,09 a 0,582±0,12 entre la zona de más frío (ITH<=61) y más calor (ITH >=71). Las correlaciones entre los Valor Genético (BV) estimados en ambas zonas fue de 0,607 y solo 262 de los mejores 600 animales seleccionados fueron mejores en ambas zonas. Estas respuestas indican que los resultados de TD no debe considerarse como expresión del mismo rasgo en toda la trayectoria de ITH, en otras palabras, existe interacción genotipo ambiente. Se confeccionó un índice basado en todos los estimados de los BV a lo largo de ITH que permitió identificar no solo la existencia de variación genética en ST sino también variaciones en la forma de respuesta de los animales a los diferentes niveles de ITH.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aguilar, I., Misztal, I., & Tsuruta, S. (2010). Short communication: genetic trends of milk yield under heat stress for US Holsteins. Journal of dairy science, 93(4), 1754–1758. https://doi.org/10.3168/jds.2009-2756

Bergmann, J., Vinke, K., Fernández Palomino, C.A., Gornott, C., Gleixner, S., Laudien, R., Lobanova, A., Ludescher J. & Schellnhuber H.J. (2021). Assessing the Evidence: Climate Change and Migration in Peru. Potsdam Institute for Climate Impact Research (PIK), Potsdam, and International Organization for Migration (IOM), Geneva. 131 pag. Accesado 26/12/2022. https://publications.iom.int/system/files/pdf/assessi ng-the-evidence-peru.pdf.

Bernabucci, U. (2019). Climate change: impact on livestock and how can we adapt. Animal Frontiers, 9(1), 3–5. https://doi.org/10.1093/af/vfy039

Bohlouli, M., Alijani, S., Naderi, S., Yin, T., & König, S. (2019). Prediction accuracies and genetic parameters for test-day traits from genomic and pedigree-based random regression models with or without heat stress interactions. Journal of dairy science, 102(1), 488–502. https://doi.org/10.3168/jds.2018-15329

Boligon, A. A., Vicente, I. S., Vaz, R. Z., Campos, G. S., Souza, F. R., Carvalheiro, R., & Albuquerque, L. G. (2016). Principal component analysis of breeding values for growth and reproductive traits and genetic association with adult size in beef cattle. Journal of animal science, 94(12), 5014–5022. https://doi.org/10.2527/jas.2016-0737

Boonkum, W., Misztal, I., Duangjinda, M., Pattarajinda, V., Tumwasorn, S., & Sanpote, J. (2011). Genetic effects of heat stress on milk yield of Thai Holstein crossbreds. Journal of dairy science, 94(1), 487–492. https://doi.org/10.3168/jds.2010-3421

Carabaño, M. J., Bachagha, K., Ramón, M., & Díaz, C. (2014). Modeling heat stress effect on Holstein cows under hot and dry conditions: selection tools. Journal of dairy science, 97(12), 7889–7904. https://doi.org/10.3168/jds.2014-8023

Carabaño, M. J., Ramón, M., Díaz, C., Molina, A., Pérez-Guzmán, M. D., & Serradilla, J. M. (2017). BREEDING AND GENETICS SYMPOSIUM: Breeding for resilience to heat stress effects in dairy ruminants. A comprehensive review. Journal of animal science, 95(4), 1813–1826. https://doi.org/10.2527/jas.2016.1114

Carabaño, M. J., Ramón, M., Menéndez-Buxadera, A., Molina, A., & Díaz, C. (2019). Selecting for heat tolerance. Animal frontiers: the review magazine of animal agriculture, 9(1), 62–68. https://doi.org/10.1093/af/vfy033

Carabaño, M. J., Logar, B., Bormann, J., Minet, J., Vanrobays, M. L., Díaz, C., Tychon, B., Gengler, N., & Hammami, H. (2016). Modeling heat stress under different environmental conditions. Journal of dairy science, 99(5), 3798–3814. https://doi.org/10.3168/jds.2015-10212

Domínguez, A.M., Morales, Y., & Sánchez, J.A. (2015). Influencia del índice temperatura – humedad sobre la producción de leche. V Congreso Internacional de Producción Animal Tropical, Habana Cuba. https://www.engormix.com/ganaderia leche/articulos7 de Mayo 2020 Falconer D

Galván, G., Menéndez-Buxadera, A., Moré, M., & Gutierrez G. (2022). Impacto de los efectos climáticos sobre la producción de leche de la raza Holstein en Lima, Perú. Revista de Investigaciones Veterinarias del Perú. (Artículo submitido). 12/08/2022

Gutiérrez, G., Barrón, D., More, M., & Montoya, B. (2016). Evaluaciones genéticas poblacionales para ganado vacuno Holstein en el Perú. Notas ganaderas 2016-I apartado 456-Lima, Programa de Mejoramiento Animal, Facultad de Zootecnia, UNALM- Perú

Gilmour, A.R., Gogel, R.B.J., Cullis, B.R, & Thompson, R. (2009) Asreml User Guide Release 3.0; VSN International Ltd.: Hemel Hempstead, UK, 2009. https://asreml.kb.vsni.co.uk/wp content/uploads/sites/3/2018/02/ASReml-3-User Guide.pdf

Interbull 2020. December 2020 MACE International results for production. Accessed 30/03/2022; https://interbull.org/static/web/proddoc2012r.pdf

Jamrozik, J., & Schaeffer, L. R. (1997). Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation Holsteins. Journal of dairy science, 80(4), 762–770. https://doi.org/10.3168/jds.S0022-0302(97)75996- 4

Hayes, B., Daetwyler, H., & Goddard, M. (2016). Models for Genome ´ Environment Interaction: Examples in Livestock. Crop Sci. 56:1–9 (2016). https://doi.org/10.2135/cropsci2015.07.0451

Hammami, H., Vandenplas, J., Vanrobays, M. L., Rekik, B., Bastin, C., & Gengler, N. (2015). Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows.

Journal of dairy science, 98(7), 4956–4968. https://doi.org/10.3168/jds.2014-9148

Lee, S., Do, C., Choy, Y., Dang, C., Mahboob, A., & Cho, K. (2019). Estimation of the genetic milk yield parameters of Holstein cattle under heat stress in South Korea. Asian-Australasian journal of animal sciences, 32(3), 334–340. https://doi.org/10.5713/ajas.18.0258

Lindsey, R., & Dahlman, L. (2021). Climate Change: Global Temperature. Accessed 29/03/2022 https://www.climate.gov/news features/understanding-climate/climate-change global-temperature

MATLAB and Statistics Toolbox Release; The Math Works, Inc.: Natick, MA, USA, 2019. https://www.mathworks.com/matlabcentral/answer s/601606-download-matlab-2019

MINAGRI (2017). Plan nacional de desarrollo ganadero 2017-2027. Ministerio de Agricultura y Riego 2017, República del Perú. R.M. Nº 297- 2017-MINAGRI, 79 pag.

Misztal, I., Bohmanova, J., Freitas, M., Tsuruta, S., Norman, H., & Lawlor. T. (2006). Issues in genetic evaluation of dairy cattle for heat tolerance. 8th World Congress on Genetics Applied to Livestock Production, August 13-18, 2006, Belo Horizonte, MG, Brasil .4pag

Misztal, I. (2017). BREEDING AND GENETICS SYMPOSIUM: Resilience and lessons from studies in genetics of heat stress. J. Anim. Sci. 95:1780– 1787. https://doi.org/10.2527/jas.2016.0953

Negri, R., Aguilar, I., Feltes, G. L., Machado, J. D., Braccini Neto, J., Costa-Maia, F. M., & Cobuci, J. A. (2021). Inclusion of bioclimatic variables in genetic evaluations of dairy cattle. Animal bioscience, 34(2), 163–171. https://doi.org/10.5713/ajas.19.0960

Oliveira, H. R., Brito, L. F., Lourenco, D. A. L., Silva, F. F., Jamrozik, J., Schaeffer, L. R., & Schenkel, F. S. (2019). Invited review: Advances and applications of random regression models: From quantitative genetics to genomics. Journal of dairy science, 102(9), 7664–7683. https://doi.org/10.3168/jds.2019-16265

Pallete, A. (2001). Evaluación y selección de toros lecheros. Rev Inv Vet Perú 2001; 12(2): 150-160

Pryce, J., Nguyen, T., Cheruiyot, E., Marett, L., Garner, J., & Haile-Mariam, M. (2022). Impact of hot weather on animal performance and genetic strategies to minimize the effect. Animal Production Science. 62(8) 726-735 https://doi.org/10.1071/AN21259.

Rockett, L. (2021). Phenotypic and Genetic Analyses of Heat Tolerance in Holsteins using NASA Prediction of Worldwide Energy Resources Weather Data. A MS Thesis, University of Guelph August,2021,140pag.Accessed 28/03/2022 https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/26233/Rockett_Paige_202108_MSc.pdf ?sequence=3

Ruiz, L., Carcelén, F., & Sandoval-Monzón, R. (2019). Evaluación de los indicadores de estrés calórico en las principales localidades de lechería intensiva del departamento de Lima, Perú. Evaluation of heat stress indicators in the main locations of intensive dairy production in Lima, Peru .Rev Inv Vet Perú 2019; 30(1): 88-98 http://dx.doi.org/10.15381/rivep.v30i1.15694

Ravagnolo, O., & Misztal, I. (2000). Genetic component of heat stress in dairy cattle, parameter estimation. Journal of dairy science, 83(9), 2126-2130. https://doi.org/10.3168/jds.S0022- 0302(00)75095-8

Sánchez, J. P., Misztal, I., Aguilar, I., Zumbach, B., & Rekaya, R. (2009). Genetic determination of the onset of heat stress on daily milk production in the US Holstein cattle. Journal of dairy science, 92(8), 4035–4045. https://doi.org/10.3168/jds.2008-1626

Santana, M. L., Jr, Pereira, R. J., Bignardi, A. B., Filho, A. E., Menéndez-Buxadera, A., & El Faro, L. (2015). Detrimental effect of selection for milk yield on genetic tolerance to heat stress in purebred Zebu cattle: Genetic parameters and trends. Journal of dairy science, 98(12), 9035–9043. https://doi.org/10.3168/jds.2015-9817

Santana, M. L., Bignardi, A. B., Pereira, R. J., Stefani, G., & El Faro, L. (2017). Genetics of heat tolerance for milk yield and quality in Holsteins. Animal : an international journal of animal bioscience, 11(1), 4–14. https://doi.org/10.1017/S1751731116001725

Santana, M. L., Jr, Pereira, R.J., Bignardi, A.B., El Faro, L., Pires, M.F.Á., Andrade, R.G., Perez, B.C., Bruneli, F.A.T., & Peixoto, M.G.C.D. (2020). Dual-purpose Guzerá cattle exhibit high dairy performance under heat stress. Journal of animal breeding and genetics. 137(5), 486–494. https://doi.org/10.1111/jbg.12450

Savegnago, R. P., Caetano, S. L., Ramos, S. B., Nascimento, G. B., Schmidt, G. S., Ledur, M. C., & Munari, D. P. (2011). Estimates of genetic parameters, and cluster and principal components analyses of breeding values related to egg production traits in a White Leghorn population. Poultry science, 90(10), 2174–2188. https://doi.org/10.3382/ps.2011-01474

Schaeffer, L.R. (2004). Application of random regression models in animal breeding. Livestock Production Science 86 (2004) 35 – 45. https://doi.org/10.1016/S0301-6226(03)00151-9

Stinchcombe, J. R., Function-valued Traits Working Group, & Kirkpatrick, M. (2012). Genetics and evolution of function-valued traits: understanding environmentally responsive phenotypes. Trends in ecology & evolution, 27(11), 637–647. https://doi.org/10.1016/j.tree.2012.07.002

Van der Werf, J., & Schaeffer, L. (1997). Random regression in animal breeding. Course Notes CGIL Guelph, Canada, June 25-June 28, 1997, 58 pag, Accessed 25 Abril 2022. https://jvanderw.une.edu.au/CFcoursenotes

Descargas

Publicado

2023-01-10

Cómo citar

Menendez-Buxadera, A. ., More Montoya, M. ., Gutiérrez-Reynoso , G. ., & Galván Cavero, G. . (2023). INTERACCIÓN GENOTIPO AMBIENTE EN ESTRÉS TÉRMICO Y PRODUCCIÓN DE LECHE EN VACAS HOLSTEIN EN LA REGIÓN DE LIMA, PERÚ. nales científicos, 83(2), 160–174. https://doi.org/10.21704/ac.v83i2.1902

Número

Sección

Artículo original / Research Article