Genotype Environmental Interaction between Stress Thermic and milk production in Holstein cows in Lima region Peru
DOI:
https://doi.org/10.21704/ac.v83i2.1902Keywords:
Holstein cows, milk production, stress thermic , genetic correlations, genotype environmental interactionAbstract
A total of 352596 results of the test day milk controls (TD), as well as the climatic variables of Temperature and Relative Humidity combined in an index known as ITH, carried out in 5 stables in the Lima region, between January 2006 and December 2018, were available for this study. This database was represented by the TD of 11876 Holstein daughters of 8439 dams and 321 sires and was studied by different random regression models with the objective to estimating the genetic relationships between TD and ITH as an indicator of heat stress (HS). The results indicated that heritability (h2 ), along the ITH scale shows a slightly upward trend (h2 = 0.113±0.01 to 0.187±0.02) until reaching its highest values in the so-called thermal stress zone (ITH>=68 to ITH=77). The genetic correlations (rg) were close to the unit between adjacent or very close ITH levels and decreased as the differences between the HS intensity measured by the ITH increased, reaching results between rg = 0.562±0.09 to 0.582±0.12 between the coldest area (ITH< = 61) and the hottest (ITH > = 71). The correlations between the estimated Breeding Value (BV) in both zones was 0.607 and only 262 of the top 600 animals selected were better in both zones. These responses indicate that the results of TD should not be considered as an expression of the same trait throughout the trajectory of ITH, in other words there is environmental genotype interaction. An index was made based on all the estimates of the BV throughout ITH that allowed to identify not only the existence of genetic variation in ST but also variations in the way animals responded to the different levels of ITH.
Downloads
References
Aguilar, I., Misztal, I., & Tsuruta, S. (2010). Short communication: genetic trends of milk yield under heat stress for US Holsteins. Journal of dairy science, 93(4), 1754–1758. https://doi.org/10.3168/jds.2009-2756
Bergmann, J., Vinke, K., Fernández Palomino, C.A., Gornott, C., Gleixner, S., Laudien, R., Lobanova, A., Ludescher J. & Schellnhuber H.J. (2021). Assessing the Evidence: Climate Change and Migration in Peru. Potsdam Institute for Climate Impact Research (PIK), Potsdam, and International Organization for Migration (IOM), Geneva. 131 pag. Accesado 26/12/2022. https://publications.iom.int/system/files/pdf/assessi ng-the-evidence-peru.pdf.
Bernabucci, U. (2019). Climate change: impact on livestock and how can we adapt. Animal Frontiers, 9(1), 3–5. https://doi.org/10.1093/af/vfy039
Bohlouli, M., Alijani, S., Naderi, S., Yin, T., & König, S. (2019). Prediction accuracies and genetic parameters for test-day traits from genomic and pedigree-based random regression models with or without heat stress interactions. Journal of dairy science, 102(1), 488–502. https://doi.org/10.3168/jds.2018-15329
Boligon, A. A., Vicente, I. S., Vaz, R. Z., Campos, G. S., Souza, F. R., Carvalheiro, R., & Albuquerque, L. G. (2016). Principal component analysis of breeding values for growth and reproductive traits and genetic association with adult size in beef cattle. Journal of animal science, 94(12), 5014–5022. https://doi.org/10.2527/jas.2016-0737
Boonkum, W., Misztal, I., Duangjinda, M., Pattarajinda, V., Tumwasorn, S., & Sanpote, J. (2011). Genetic effects of heat stress on milk yield of Thai Holstein crossbreds. Journal of dairy science, 94(1), 487–492. https://doi.org/10.3168/jds.2010-3421
Carabaño, M. J., Bachagha, K., Ramón, M., & Díaz, C. (2014). Modeling heat stress effect on Holstein cows under hot and dry conditions: selection tools. Journal of dairy science, 97(12), 7889–7904. https://doi.org/10.3168/jds.2014-8023
Carabaño, M. J., Ramón, M., Díaz, C., Molina, A., Pérez-Guzmán, M. D., & Serradilla, J. M. (2017). BREEDING AND GENETICS SYMPOSIUM: Breeding for resilience to heat stress effects in dairy ruminants. A comprehensive review. Journal of animal science, 95(4), 1813–1826. https://doi.org/10.2527/jas.2016.1114
Carabaño, M. J., Ramón, M., Menéndez-Buxadera, A., Molina, A., & Díaz, C. (2019). Selecting for heat tolerance. Animal frontiers: the review magazine of animal agriculture, 9(1), 62–68. https://doi.org/10.1093/af/vfy033
Carabaño, M. J., Logar, B., Bormann, J., Minet, J., Vanrobays, M. L., Díaz, C., Tychon, B., Gengler, N., & Hammami, H. (2016). Modeling heat stress under different environmental conditions. Journal of dairy science, 99(5), 3798–3814. https://doi.org/10.3168/jds.2015-10212
Domínguez, A.M., Morales, Y., & Sánchez, J.A. (2015). Influencia del índice temperatura – humedad sobre la producción de leche. V Congreso Internacional de Producción Animal Tropical, Habana Cuba. https://www.engormix.com/ganaderia leche/articulos7 de Mayo 2020 Falconer D
Galván, G., Menéndez-Buxadera, A., Moré, M., & Gutierrez G. (2022). Impacto de los efectos climáticos sobre la producción de leche de la raza Holstein en Lima, Perú. Revista de Investigaciones Veterinarias del Perú. (Artículo submitido). 12/08/2022
Gutiérrez, G., Barrón, D., More, M., & Montoya, B. (2016). Evaluaciones genéticas poblacionales para ganado vacuno Holstein en el Perú. Notas ganaderas 2016-I apartado 456-Lima, Programa de Mejoramiento Animal, Facultad de Zootecnia, UNALM- Perú
Gilmour, A.R., Gogel, R.B.J., Cullis, B.R, & Thompson, R. (2009) Asreml User Guide Release 3.0; VSN International Ltd.: Hemel Hempstead, UK, 2009. https://asreml.kb.vsni.co.uk/wp content/uploads/sites/3/2018/02/ASReml-3-User Guide.pdf
Interbull 2020. December 2020 MACE International results for production. Accessed 30/03/2022; https://interbull.org/static/web/proddoc2012r.pdf
Jamrozik, J., & Schaeffer, L. R. (1997). Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation Holsteins. Journal of dairy science, 80(4), 762–770. https://doi.org/10.3168/jds.S0022-0302(97)75996- 4
Hayes, B., Daetwyler, H., & Goddard, M. (2016). Models for Genome ´ Environment Interaction: Examples in Livestock. Crop Sci. 56:1–9 (2016). https://doi.org/10.2135/cropsci2015.07.0451
Hammami, H., Vandenplas, J., Vanrobays, M. L., Rekik, B., Bastin, C., & Gengler, N. (2015). Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows.
Journal of dairy science, 98(7), 4956–4968. https://doi.org/10.3168/jds.2014-9148
Lee, S., Do, C., Choy, Y., Dang, C., Mahboob, A., & Cho, K. (2019). Estimation of the genetic milk yield parameters of Holstein cattle under heat stress in South Korea. Asian-Australasian journal of animal sciences, 32(3), 334–340. https://doi.org/10.5713/ajas.18.0258
Lindsey, R., & Dahlman, L. (2021). Climate Change: Global Temperature. Accessed 29/03/2022 https://www.climate.gov/news features/understanding-climate/climate-change global-temperature
MATLAB and Statistics Toolbox Release; The Math Works, Inc.: Natick, MA, USA, 2019. https://www.mathworks.com/matlabcentral/answer s/601606-download-matlab-2019
MINAGRI (2017). Plan nacional de desarrollo ganadero 2017-2027. Ministerio de Agricultura y Riego 2017, República del Perú. R.M. Nº 297- 2017-MINAGRI, 79 pag.
Misztal, I., Bohmanova, J., Freitas, M., Tsuruta, S., Norman, H., & Lawlor. T. (2006). Issues in genetic evaluation of dairy cattle for heat tolerance. 8th World Congress on Genetics Applied to Livestock Production, August 13-18, 2006, Belo Horizonte, MG, Brasil .4pag
Misztal, I. (2017). BREEDING AND GENETICS SYMPOSIUM: Resilience and lessons from studies in genetics of heat stress. J. Anim. Sci. 95:1780– 1787. https://doi.org/10.2527/jas.2016.0953
Negri, R., Aguilar, I., Feltes, G. L., Machado, J. D., Braccini Neto, J., Costa-Maia, F. M., & Cobuci, J. A. (2021). Inclusion of bioclimatic variables in genetic evaluations of dairy cattle. Animal bioscience, 34(2), 163–171. https://doi.org/10.5713/ajas.19.0960
Oliveira, H. R., Brito, L. F., Lourenco, D. A. L., Silva, F. F., Jamrozik, J., Schaeffer, L. R., & Schenkel, F. S. (2019). Invited review: Advances and applications of random regression models: From quantitative genetics to genomics. Journal of dairy science, 102(9), 7664–7683. https://doi.org/10.3168/jds.2019-16265
Pallete, A. (2001). Evaluación y selección de toros lecheros. Rev Inv Vet Perú 2001; 12(2): 150-160
Pryce, J., Nguyen, T., Cheruiyot, E., Marett, L., Garner, J., & Haile-Mariam, M. (2022). Impact of hot weather on animal performance and genetic strategies to minimize the effect. Animal Production Science. 62(8) 726-735 https://doi.org/10.1071/AN21259.
Rockett, L. (2021). Phenotypic and Genetic Analyses of Heat Tolerance in Holsteins using NASA Prediction of Worldwide Energy Resources Weather Data. A MS Thesis, University of Guelph August,2021,140pag.Accessed 28/03/2022 https://atrium.lib.uoguelph.ca/xmlui/bitstream/handle/10214/26233/Rockett_Paige_202108_MSc.pdf ?sequence=3
Ruiz, L., Carcelén, F., & Sandoval-Monzón, R. (2019). Evaluación de los indicadores de estrés calórico en las principales localidades de lechería intensiva del departamento de Lima, Perú. Evaluation of heat stress indicators in the main locations of intensive dairy production in Lima, Peru .Rev Inv Vet Perú 2019; 30(1): 88-98 http://dx.doi.org/10.15381/rivep.v30i1.15694
Ravagnolo, O., & Misztal, I. (2000). Genetic component of heat stress in dairy cattle, parameter estimation. Journal of dairy science, 83(9), 2126-2130. https://doi.org/10.3168/jds.S0022- 0302(00)75095-8
Sánchez, J. P., Misztal, I., Aguilar, I., Zumbach, B., & Rekaya, R. (2009). Genetic determination of the onset of heat stress on daily milk production in the US Holstein cattle. Journal of dairy science, 92(8), 4035–4045. https://doi.org/10.3168/jds.2008-1626
Santana, M. L., Jr, Pereira, R. J., Bignardi, A. B., Filho, A. E., Menéndez-Buxadera, A., & El Faro, L. (2015). Detrimental effect of selection for milk yield on genetic tolerance to heat stress in purebred Zebu cattle: Genetic parameters and trends. Journal of dairy science, 98(12), 9035–9043. https://doi.org/10.3168/jds.2015-9817
Santana, M. L., Bignardi, A. B., Pereira, R. J., Stefani, G., & El Faro, L. (2017). Genetics of heat tolerance for milk yield and quality in Holsteins. Animal : an international journal of animal bioscience, 11(1), 4–14. https://doi.org/10.1017/S1751731116001725
Santana, M. L., Jr, Pereira, R.J., Bignardi, A.B., El Faro, L., Pires, M.F.Á., Andrade, R.G., Perez, B.C., Bruneli, F.A.T., & Peixoto, M.G.C.D. (2020). Dual-purpose Guzerá cattle exhibit high dairy performance under heat stress. Journal of animal breeding and genetics. 137(5), 486–494. https://doi.org/10.1111/jbg.12450
Savegnago, R. P., Caetano, S. L., Ramos, S. B., Nascimento, G. B., Schmidt, G. S., Ledur, M. C., & Munari, D. P. (2011). Estimates of genetic parameters, and cluster and principal components analyses of breeding values related to egg production traits in a White Leghorn population. Poultry science, 90(10), 2174–2188. https://doi.org/10.3382/ps.2011-01474
Schaeffer, L.R. (2004). Application of random regression models in animal breeding. Livestock Production Science 86 (2004) 35 – 45. https://doi.org/10.1016/S0301-6226(03)00151-9
Stinchcombe, J. R., Function-valued Traits Working Group, & Kirkpatrick, M. (2012). Genetics and evolution of function-valued traits: understanding environmentally responsive phenotypes. Trends in ecology & evolution, 27(11), 637–647. https://doi.org/10.1016/j.tree.2012.07.002
Van der Werf, J., & Schaeffer, L. (1997). Random regression in animal breeding. Course Notes CGIL Guelph, Canada, June 25-June 28, 1997, 58 pag, Accessed 25 Abril 2022. https://jvanderw.une.edu.au/CFcoursenotes
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Alberto Menendez-Buxadera, Manuel More Montoya, Gustavo Gutiérrez-Reynoso, Gerardo Antonio Galván Cavero
This work is licensed under a Creative Commons Attribution 4.0 International License.