Calibration of time domain reflectometry sensors in ultisol savanna soils
DOI:
https://doi.org/10.21704/ac.v83i1.1884Keywords:
soil moisture probe, capacitance, CS616, TDRAbstract
The time domain reflectometry method (TDR) estimates the soil water content by getting the soil dielectric permittivity (Ka) and a third order polynomial that relates the Ka with the volumetric water content. However, in many applications an in-situ calibration must be performed for a particular soil type. The objectives of this study were to perform the calibration and determine the specific equations of a CS616 humidity sensor, in savanna Ultisols soils of different textures, collected in different agricultural areas of the Maturín Municipality, Monagas state, Venezuela, to correct the measurements of the TDR sonda. The study was carried out in square stainless-steel containers with a side of 10 cm and a height of 32 cm, implemented under controlled conditions in a postgraduate greenhouse at the Universidad de Oriente, where daily monitoring of soil moisture measurements was carried out for 30 days, from saturated humidity to natural drying. The CS616 sensors presented a linear response to the variation of soil moisture obtaining R2 > 0,90. The RMSE values before and after calibration ranged from 0,119 to 0,012 m3m-3. The Willmott (d) and performance (c) indexes indicate that the equation of best fit was found in the clay loam soil. It is concluded that the calibration equations obtained were more precise than the factory equations in this type of soil.
Downloads
References
• Abanto-Rodríguez, C., Farias-Araújo, W., Cardoso-Chagas, P., Alves Chagas, E., Da Silva Siqueira, R., Monteiro N, J. L., Barbosa, S. M., Ferreira Melo, V., & Maffei-Valero, M. A. (2020). Calibración De Sensores De Reflectometría De Dominio De Frecuencia Para Estimar La Humedad En Un Suelo Geric Xanthic Ferralsol. Bioagro, 32 (2): 123-130.
• Barbosa, S. M. (2015). Condicionamento físico hídrico do solo como potencializador do crescimento inicial do cafeeiro. Dissertação (Mestrado). Universidade Federal de Lavras, UFLA, MG. 67 p. Accesado 10/02/2020. http://www.sbicafe.ufv.br:80/handle/123456789/8483.
• Blonquist, J., Jones, S., & Robinson, D. (2005). Standardizing characterization of electromagnetic water content sensors: Part 2. Evaluation of seven sensing systems. Vadose Zone Journal, 4, 1059–1069. http:// doi.org/10.2136/vzj2004.0141.
• Bruno, R. D., Da Rocha, H. R., De Freitas, H. C., Goulden, M. L., & Miller, S. D. (2006). Soil moisture dynamics in an estern Amazonian tropical forest. Hydrol. Proc. 20: 2477-2489. https://doi.org/10.1002/hyp.6211.
• Caicedo-Rosero, L. C., Méndez-Ávila, F. J., Gutiérrez-Zeferino E. & Flores-Cuautle J. J. A. (2021). Medición de humedad en suelos: Revisión de métodos y características. Publicación Semestral Pädi, 9(17):1–8. https://doi.org/10.29057/icbi.v9i17.7035.
• Camargo, A.P. & Sentelhas, P.C. (1997). Avaliação do desempenho de diferentes métodos de estimativas da evapotranspiração potencial no Estado de São Paulo, Brasil. Revista Brasileira de Agrometeorologia, 5(1): 89-97.
• Campbell Scientific (1996). CS615 Water Content Reflectometer. Instruction manual. Ver. 8221-07, Rev. 10/96. Campbell Scientific Inc. Logan, UT, EEUU.
• Campbell Scientific Inc. (2004). CS616 and CS625 water content reflectometers instruction manual. Campbell Scientific Inc., Logan, UT.
• Dasberg, S. & Hopman J. W. (1992). Time domain reflectometry calibration for uniformly and nonuniformly wetted sandy and clayey soils. Soil Sci. Soc. Am. J. 56: 1341-1345. https://doi.org/10.2136/sssaj1992.03615995005600050002x.
• Fares, A., Abbas, F., Domingos, M. & Mair, A. (2011) Improved calibration functions of three capacitance probes for the measurement of soil moisture in tropical soils. Sensors, 11(5), pp. 4858-4874. DOI: 10.3390/s110504858.
• Gil-Marín, J. A, Montaño-Mata, N. J & Pérez-Córcega, G. J. (2021). Requerimiento hídrico y edad de trasplante de la berenjena Solanum melongena L. bajo riego por goteo en el Valle del Rio Guarapiche. Agronomía Tropical, 71:1-10.
• Herkelrath, W. N., Hamburg, S. P., & Murphy, F. (1991) .Automatic, real-time monitoring of soil moisture in a remote field area with time domain reflectometr y. Water Resource. Res. 27: 857-864. https://doi.org/10.1029/91WR00311.
• Irmak, S. & A. Irmak. (2005). Performance of frequency-domain reflectometer, capacitance, and pseudo-transit time-based soil water content probes in four coarse-textured soils. Applied Engineering in Agriculture, 21(6): 999-1008.
• Jackson, S. H. (2004). In situ calibration of time domain reflectometry sensors in multiple soils. Comm. Soil Sci. Plant. Anal., 35: 865-878. https://doi.org/10.1081/CSS-120030363.
• Jiménez, A. A. C., Almeida, C. D. G. C, Santos Júnior, J. A. & Dos Santos, C. S. (2020).Calibration of two capacitive soil moisture sensors in Ultisol. DYNA, 87(213), pp. 75-79, April - June. https://doi.org/10.15446/dyna.v87n213.75361.
• Kizito, F., Campbell, C. S., Campbell, G. S., Cobos, D. R., Teare, B. L., & Carter, B. (2008). Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor. Journal of Hydrology, 352, 367–378. doi:10.1016/j.jhydrol.2008.01.021.
• López-Seijas, T., Ustariz, A., Cisnero-Zayas, E., Rodríguez-González, A., Herrera-Puebla, J., & González-Robaina,C.F. (2018). Calibración de sondas electromagnéticas para estudios de riego en diferentes zonas agrícolas. Revista Ingeniería Agrícola, ISSN-2306-1545, E-ISSN-2227-8761, Vol. 8, No. 3 (julio-agosto-septiembre), pp. 31-39. Recuperado de https://rcta.unah.edu.cu/index.php/IAgric/article/view/974.
• Miyamoto, T. & J. Chikushi. (2000). Relations between soil water content and apparent dielectric constant evaluated by dielectric mixing models. Trans. Jpn. Irrigation, Drainage Reclamation Eng., 206: 57-62.
• Ministerio del Ambiente y de los Recursos Naturales (1996). Atlas del Estado Monagas. Caracas, Venezuela: Ministerio del Poder Popular Para El Ambiente. 78 pp.
• Qi, Z. & Helmers, M.J. (2010). The conversion of permittivity as measured by a PR2 capacitance probe into soil moisture values for Des Moines lobe soils in Iowa. Soil Use and Management, 26(1): 82-92. https://doi.org/10.1111/j.1475-2743.2009.00256.x.
• Rüdiger, C., Western, A. W, Walker, J. P, Smith A. B, Kalma, J. D & Willgoose G. R. (2010). Towards a general equation for frequency domain reflectometers. J. Hydrol. doi:10.1016/j.jhydrol.2009.12.046.
• Schaap, M. G., De Lange, L., & Heimovaara, T. J. (1996). TDR calibration of organic forest floor media. Soil Technol. 11: 205-217. https://doi.org/10.1016/S0933-3630(96)00128-6.
• Seyfried, M. S., & Murdock, M.D. (2001). Response of a new soil water sensor to variable soil, water content, and temperature. Soil Science Society of America Journal, 65: 28–34. https://doi.org/10.2136/sssaj2001.65128x.
• Silva, B. M., Oliveira, G. C., Serafim, M. E., Silva Júnior, J. J., Colombo, A. & Lima, J. M. I. (2012). Acurácia e calibração de sonda de capacitância em Latossolo Vermelho cultivado com cafeeiro. Pesq. Agropec. Bras., 47(2): 277-286.
• Silva Junior, J.J., Colombo, A., Scalco, A.S., Silva, B.M. & Lima, P.T. (2013). Calibração de sondas de capacitância para determinação de umidade em Latossolo Vermelho Distroférrico. Irriga, Botucatu, 18(4): 743-755. doi = 10.15809/irriga.2013v18n4p743.
• Stockle, C.O., Kjelgaard, J. & Bellocchi, G. (2004). Evaluation of estimated weather data for calculating Penman-Monteith reference evapotranspiration. Irrigation Science, 23(1): 39-46. DOI: 10.1007/s00271-004-0091-0.
• Suzuki, S, Hirota T. & Iwata Y.(2012). Experimental Study on Sample Size for Laboratory Calibration Tests of Commercial Dielectric Soil Water. Japan Agricultural Research Quarterly, 46(1), 73-79. https://doi.org/10.6090/jarq.46.73.
• Urriola Barrios, P. L. (2007). La Agricultura En El Estado Monagas: el Ayer, El Hoy Y El Mañana. Volumen 02. Cumaná, Venezuela. Universidad de Oriente.
• Topp, G. C., Davis, J. L., & Annan, A.P. (1980). Electromagnetic determination of soil water content measurement in coaxial transmission line. Water Resour. Res. 16: 574-582. https://doi.org/10.1029/WR016i003p00574.
• Varble, J. L. & Chávez, J. L. (2011). Performance evaluation and calibration of soil water content and potential sensors for agricultural soils in eastern Colorado. Agricultural Water Management, 101(1): 93-106, 2011. DOI: 10.1016/j.agwat.2011.09.007.
• Vera, J., Abrisqueta, J. M., Quezada, R., Munguía, J., Callejas, R., Gálvez, R. A., Abrisqueta, I., & Ruiz-Sánchez, M. C. (2016): Calibración de sondas capacitivas para estimar la humedad del suelo en condiciones de campo: efecto de la pedregosidad. [en línea] 2016, Disponible en: www.plastiques-agricoles.com/wp-content/uploads/2016/06/Irrigation-07.pdf [Consulta: julio 08 2020].
• Walker, J. P., Willgoose, G. R. & Kalma, J. D. (2004). In situ measurement of soil moisture: a comparison of technique. Journal of Hydrology, 293(1-4):85-99. DOI: 10.1016/j.jhydrol.2004.01.008.
• Western, A. W., & Seyfried, M. S. (2005). A calibration and temperature correction procedure for the water-content reflectometer. Hydrological Processes, 19:3785–3793. https://doi.org/10.1002/hyp.6069.
• Willmott, C. J. (1981). On the validation of models. Physical Geography, pp.184-194. https://doi.org/10.1080/02723646.1981.10642213.
• Yu, C., W. Warrick, & M. H. Conklin. 1999. Derived functions of time domain reflectometry for soil moisture measurements. Water Resour. Res. 35: 1789-1796. https://doi.org/10.1029/1999WR900025.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 José Gil-Marín, María Cordova-Rodriguez, Alejandro Zermeño-Gonzalez
This work is licensed under a Creative Commons Attribution 4.0 International License.