Comparison of organic carbon from humic and fulvic acids and the degree of humification in five soil orders

Authors

  • Sandro Sardón Nina Universidad Nacional del Altiplano, Puno, Perú
  • Raúl D. Zapata Hernández Universidad Nacional de Colombia, Medellin, Colombia
  • Luis A. Arias López Universidad Nacional de Colombia, Medellin, Colombia

DOI:

https://doi.org/10.21704/pja.v5i1.1676

Keywords:

Humus fractions, soils orders, humic substances

Abstract

This study compared the organic carbon (OC) content in fractions of humic acids (HA) and fulvic acids (FA) in five soil orders (Aridisol, Entisol, Histosol, Inceptisol and Mollisol) and know their association with the degree of humification. Extraction and fractionation, as well as the degree of humification was carried out by the Nagoya method proposed by Kumada. OC quantification was determined by the Walkley and Black method. The results are: the average OC content of HAs of the order Aridisol differs from that of Histosols, Inceptisols, and Mollisols. The order Entisol presented differences with the Histosols and Mollisols, the soils of the order Inceptisol presented differences with the Aridisols and Histosols and those of the order Histosol differed from the Aridisols, Entisols and Inceptisols. Similarly, those of the Mollisol order differed with the Aridisols, Entisols and Inceptisols. In the fraction of FA the average OC content of the order Aridisol deferred from that found in Histosols, Inceptisols and Mollisols. The Entisol order differed from the Mollisols; likewise, the Inceptisol order differed from the Aridisols and Mollisols and the Histosol order differed from the Aridisols. Finally, the order Mollisol was also different from the Aridisols, Entisols, and Inceptisols. Soil types do not show wetting patterns, because they are not based on pedogenetic processes and these have a wide range of characteristics in surface horizons.

Downloads

Download data is not yet available.

References

Allison, L. E., Bollen, W. B. & Moodie, C. D. (1965). Total carbon. In A. G. Norman (Ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 1346–1366). Wiley.

Bockheim, J. G. (2014). Mollic epipedon. In J. G. Bockheim (Ed.) Soil Geography of the USA (pp. 29–46). Springer International Publishing.

Buol, S. W., Southard, R. J., Graham, R. C. & McDaniel, P. A. (2011). Soil genesis and classification. Sixth Edition. John Wiley & Sons, Chichester, 543 p.

Christensen, B. T. (1992). Physical fractionation of soil and organic matter in primary particle size and density separates. In B. A. Stewart (Ed.) Advances in soil science (pp. 1–90). Springer, New York, NY.

Duchaufour, P. (1987). Manual de edafología. Masson, S. A., Barcelona, España.

El-Metwally, M. S., Ahmad A. T., Ahmad A. M. & Moustafa A. E. (2014). Chemical composition of humic substances extracted from salt affected egyptian soils. Life Science Journal, 1111, 197–206.

Fanning, D. S. & Fanning, M. C. B. (1989). Soil: Morphology, genesis and classification. John Wiley and Sons Inc., New York, USA.

Gallardo J. F. & Merino A. (2007). El ciclo del carbono y la dinámica de los sistemas forestales. In: F. Bravo (Coord.). El papel de los bosques españoles en la mitigación del cambio climático (pp. 43–64). Fundación Gas Natural, Barcelona, España.

Gallardo J. F. (2016). La materia orgánica del suelo: Residuos orgánicos, humus, compostaje, captura de carbono. Editorial S.i.F. y Q.A., Salamanca, España.

Ismail-Meyer, K., Stolt, M. H., & Lindbo, D. L. (2018). Soil organic matter. In G. Stoops, V. Marcelino & F. Mees (Eds.) Interpretation of micromorphological features of soils and regoliths (pp. 471–512). Elsevier.

Jaramillo, D. F. (2014). El Suelo: Origen, propiedades, espacialidad. Universidad Nacional de Colombia, Medellín, Colombia.

Kononova, M. M. (1975). Humus of virgin and cultivated soils. In J.E. Gieseking (Ed.) Soil components (pp. 475–526). Springer, Berlin, Alemania.

Kononova, M. M. (1966). Soil organic matter: Its nature, its role in soil formation and in soil fertility, 2nd ed. Pergamon Press, Oxford.

Kumada, K. (1987). Chemistry of soil organic matter. Japan Scientific Societies Press. Elsevier. Tokyo.

León, A. Y. (2016). Reserva de carbono en bofedales y su relación con la florística y condición del pastizal. [Master’s Thesis, Universidad Nacional Agraria La Molina], Perú.

Li, M., Han, X., Du, S., & Li, L. J. (2019). Profile stock of soil organic carbon and distribution in croplands of Northeast China. Catena, 174, 285–292.

Lindsay, W.L. (1979). Chemical equilibria in soils. John Wiley & Sons, Inc. New York.

Ministerio de Agricultura y Riego. (2016). Levantamiento de suelos y clasificación de tierras por su capacidad de uso mayor del distrito de San Rafael, provincia de Ambo, departamento de Huánuco-Perú.

Osorio, N.W. (2018). Manejo de nutrientes en suelos del trópico. Universidad Nacional de Colombia, Medellín.

Piccolo, A., Spaccini, R., Drosos, M., Vinci, G., & Cozzolino, V. (2018). The molecular composition of humus carbon: Recalcitrance and reactivity in soils. In C. García, P. Nannipieri, T. Hernandez (Eds.) The Future of Soil Carbon (pp. 87–124).

Simonson, R. W. (1959). Outline of a generalized theory of soil genesis 1. Soil Science Society of America Journal, 23(2), 152–156.

Soil Survey Staff. (1999). Soil taxonomy-a basic system of soil classification for making and interpreting soil surveys. 2nd ed. Agric. Handb. No. 436. USDA-NRCS, Washington, DC.

Soil Survey Staff. (2014). Keys to soil taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington, DC.

Spain, A.V., Isbell, R.F. & Probert, M.E. (1983). Organic matter contents of australian soils. In Soils: An australian viewpoint (pp. 551–563). CSIRO, Melbourne/Academic Press, London.

Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions (2nd ed.). John Wiley & Sons, New York.

Tsutsuki, K., Suzuki, C., Kuwatsuka, S., Becker-Heidmann, P., & Scharpenseel, H. W. (1988). Investigation on the stabilization of the humus in mollisols. Zeitschrift für Pflanzenernaehrung und Bodenkunde, 151(2), 87–90.

Walkley, A. & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.

Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils-effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(4), 251–264.

Zaccone, C., Plaza, C., Ciavatta, C., Miano, T. M., & Shotyk, W. (2018). Advances in the determination of humification degree in peat since: Applications in geochemical and paleoenvironmental studies. Earth-Science Reviews, 185, 163–178.

Zamboni, C., Ingrid, R., Ballesteros, G., María, I., Zamudio, S., & Adriana, M. (2006). Caracterización de ácidos húmicos y fúlvicos de un Mollisol bajo dos coberturas diferentes. Revista Colombiana de Química, 35(2), 191–203.

Zapata, R. D. (2001). ¿Qué es el humus?, In J. C. Pérez, C. L. Alvarez, & N. W. Osorio (Eds.) Uso de microorganismos en la agricultura, materia orgánica: mito o realidad. X Congreso de la ciencia del suelo (pp. 155–159). Medellín, Colombia.

Zapata, R. D. (2006). Química de los procesos pedogenéticos. Universidad Nacional de Colombia, Medellín, Colombia.

Zapata, R. D. (2014). Los procesos químicos del suelo. Universidad Nacional de Colombia, Medellín, Colombia.

Downloads

Published

2021-04-30

How to Cite

Sardón Nina, S., Zapata Hernández, R. D., & Arias López, L. A. (2021). Comparison of organic carbon from humic and fulvic acids and the degree of humification in five soil orders. Peruvian Journal of Agronomy, 5(1), 25-34. https://doi.org/10.21704/pja.v5i1.1676

Most read articles by the same author(s)