Possible induction of systemic resistance to Lasiodiplodia theobromae in avocado (Persea americana Mill.) under semi-controlled conditions at La Molina

Authors

  • Nery Veronica Jimenez-Ariza Universidad Nacional Agraria La Molina, Faculty of Agronomy, Av. La Molina S/N, Lima-Peru.
  • Jose Miguel Soto-Heredia Universidad Nacional Agraria La Molina, Faculty of Agronomy, Phytopathology department, Av. La Molina S/N, Lima-Peru.
  • Andrés Virgilio Casas-Díaz Universidad Nacional Agraria La Molina, Faculty of Agronomy, Horticulture department, Av. La Molina S/N, Lima-Peru.
  • Liliana María Aragón-Caballero Universidad Nacional Agraria La Molina, Faculty of Agronomy, Phytopathology department, Av. La Molina S/N, Lima-Peru.

DOI:

https://doi.org/10.21704/pja.v7i2.2053

Keywords:

Lasiodiplodia theobromae, Persea americana, Barrera, Timorex gold, Trichoderma harzianum, ProtecSea

Abstract

The production and export of avocado fruits, cultivar Hass, has grown exponentially in recent years in Peru, however, a high incidence of symptoms such as regressive death, cankers on plant branches, and fruit rot have been observed affecting optimal crop production and fruit quality. These symptoms are mainly generated by Lasiodiplodia theobromae fungus, whose control is limited to a few active ingredients that tend to generate pathogen resistance. The present investigation had as objective to evaluate the inducing effect of resistance in the control of Lasiodiplodia theobromae in avocado (Persea americana) cultivar Hass of five bioproducts: ProtecSea, Barrera, Timorex Gold, T 22, Vacun Q Pro and water as a control treatment, with a total of 6 treatments with 4 replications, 3 avocado trees per replication.  One-year-old avocado trees cultivar Hass were used. Treatments were applied three times via drench at ten-day intervals. Five days after the last application L. theobromae was inoculated in the avocado trees cultivar ‘ Hass’ and 40 days after the inoculation, the parameters were evaluated: length of the disease lesion, percentage of dry matter of the roots and leaves, and length of the roots. It was observed that treatments, with the exception of treatment T1 (Control), reduced the length of the disease lesion infected by L. theobromae inside the stem. Treatment T6 (T.22) resulted in a higher percentage of root dry matter (46.52 %) compared to the control treatment (41.21 %). On the other hand, there were no significant differences in leaf dry matter content among treatments. Additionally, it was observed that treatment T2 (ProtecSea) reported a root length of 56.80 cm, followed by treatment T6 (T.22) with 54.90 cm. These results are important to continue with investigations into inducing systemic resistance in plants.

Downloads

Download data is not yet available.

References

Agrios, G. (2015). Plant pathology (5a ed.). Elsevier Academic Press.

Alama, I., Maldonado, E., & Rodríguez-Galvez, E. (2006). Lasiodiplodia theobromae affect the cultivation of Palto (Persea americana) under the conditions of Piura, Peru. Universalia, 11(2), 4–13.

Ali, M., Lodhi, A., & Shahzad, S. (2005). Chemical control of Lasiodiplodia theobromae, the causal agent of mango decline in Sindh. Pakistan Journal of Botany, 37(4), 1023–2005. http://www.pakbs.org/pjbot/PDFs/37(4)/PJB37(4)1023.pdf

Álvarez, L. A. (2015). Eficacia fungicida en el control de Lasiodiplodia theobromae en plantas de palto (Persea americana) con el uso del bioestimulante a base de algas marinas Fertimar®. En VIII Congreso Mundial de la Palta, 135–141. http://www.avocadosource.com/WAC8/Section_03/AlvarezLA2015.pdf

Apaza, W. (2019). Sustentabilidad de los fundos productores de palto y espárrago en la irrigación Chavimochic [Tesis de doctorado, Universidad Nacional Agraria la Molina]. https://repositorio.lamolina.edu.pe/handle/20.500.12996/4197

Brandão, L., Ana, G., Lima Da Costa, B., Lopes, L., Freire, C., & Tinti De Oliveira, N. (2002). Randomly Amplified Polymorphic DNA of Trichoderma Isolates and Antagonism Against Rhizoctonia solani. Brazilian Archives of Biology and Technology, 45(2), 151–160.

Canet, J. v., Dobón, A., Ibáñez, F., Perales, L., & Tornero, P. (2010). Resistance and biomass in Arabidopsis: A new model for Salicylic Acid perception. Plant Biotechnology Journal, 8(2), 126–141. https://doi.org/10.1111/j.1467-7652.2009.00468.x

Chaupín, M. (2018). Incidencia, etiología y control in vitro de la muerte regresiva en el palto (Persea americana Mill.) en Luricocha, Huanta, 2017 [Tesis, Universidad Nacional de San Cristóbal de Huamanga].

Dalio, R. J. D., Maximo, H. J., Roma-Almeida, R., Barretta, J. N., José, E. M., Vitti, A. J., Blachinsky, D., Reuveni, M., & Pascholati, S. (2020). Tea Tree Oil Induces Systemic Resistance against Fusarium wilt in Banana and Xanthomonas Infection in Tomato Plants. Plants, 9(9), #1137. http://dx.doi.org/10.3390/plants9091137

Delgado, M., Ñique, M., & Méndez, E. (2019). Actualización en el control de Lasiodoplodia en palto. En Conferencia Redagrícola Trujillo, 2019.

Días, L. (2012). Systemic Acquired Resistance Induced by Salicylic Acid Resistência Sistêmica Adquirida. Biotecnología en el Sector Agropecuario y Agroindustrial, 10(2), 257–267.

Domingues, C. F., Cecato, U., Biserra, T. T., Mamédio, D., & Galbeiro, S. (2020). Azospirillum spp. In grasses and forages. Review. Revista Mexicana De Ciencias Pecuarias, 11(1), 223–240. https://doi.org/10.22319/RMCP.V11I1.4951

Espinosa-Antón, Adrián Alejandro, Hernández-Herrera, Rosalba Mireya, & González-González, Mayelín. (2020). Extractos bioactivos de algas marinas como bioestimulantes del crecimiento y la protección de las plantas. Biotecnología Vegetal, 20(4), 257-282. https://revista.ibp.co.cu/index.php/BV/article/view/677/html

Flores, H., Flores, J., Varela, S., Pérez, A., Azuara, A., & Monteon-Ojeda, A. (2021). Reporte de Lasiodiplodia theobromae (Pat.) Griffon y Maubl. en árboles cítricos de Tamaulipas. Revista Mexicana de Ciencias Agrícolas, 12(3), 499–511.

Fonseca, P., Alves, M., Dellinghausen, C., & Barboza, C. (2016). Avocado: characteristics, health benefits and uses. Ciência Rural, 46(4), 747–754. https://doi.org/10.1590/0103-8478cr20141516

García, O., Perera, S., Rodriguez, A., & Siverio, F. (2021). Estudio de parcelas de Aguacate afectadas por hongos de la familia Botryosphaeriaceae en la Isla de Tenerife. https://www.icia.es/icia/download/publicaciones/Botryosphaeriaceae.pdf

Gómez, D. E., & Reis, E. M. (2011). Inductores abióticos de resistencia contra fitopatógenos. Química Viva, 10(1), 6–17. http://www.redalyc.org/articulo.oa?id=86317320003

Intagri. (29 de enero de 2023). Uso de los Fosfitos en la Agricultura. https://www.intagri.com/public_files/Fosfitos%20en%20la%20Agricultura.pdf

Jaimes, Y., Moreno, C., & Cotes, A. (2009). Inducción de resistencia sistémica contra Fusarium oxysporum en tomate por Trichoderma koningiopsis Th003. Acta Biológica Colombiana, 14(3),111–119.

Martínez, P. (2017). Manejo de Lasiodiplodia theobromae y otros hongos de madera con Atlante Plus (Ácido Salicílico y Fosfonato de potasio) en el cultivo del palto. Redagrícola Perú. https://www.redagricola.com/pe/manejo-lasiodiplodia-theobromae-otros-hongos-madera-atlante-plus-acido-salicilico-fosfonato-potacio-cultivo-del-palto/

Nazzaro, F., Fratianni, F., Coppola, R., & de Feo, V. (2017). Essential oils and antifungal activity. Pharmaceuticals, 10(4), #86. https://doi.org/10.3390/ph10040086

Numpaque, M., Oviedo, L., Gil, J., García, C., & Durango, D. (2011). Thymol and carvacrol: biotransformation and antifungal activity against the plant pathogenic fungi Colletotrichum acutatum and Botryodiplodia theobromae. Tropical Plant Pathology, 36, 3–13.

Ombrosi, D. (2023). La biosíntesis local de auxinas regula el desarrollo de las plantas en respuesta a señales ambientales [Máster Universitario en Biotecnología Molecular y Celular de Plantas, Universitat Politécnica de Válencia].

Pani, S., & Kumar, A. (2021). Trichoderma harzianum: An Overview. In Conference: Current approaches in Agricultural, Animal Husbandary and Allied Sciences for successful entrepreneurship (CAAAHASSE-2021)

Picos, P. (2017). Caracterización fenotípica, genotípica y secretómica de Lasiodiplodia spp. patogénicas en frutos de papaya en México. Centro de Investigación en Alimentación y Desarrollo, A.C.

Picos-Muñoz, R., García-Estrada, R., León-Félix, A., Sañudo-Barajas, A., & Allende-Molar, R. (2015). Lasiodiplodia theobromae en Cultivos Agrícolas de México: Taxonomía, Hospedantes, Diversidad y Control. Revista Mexicana de Fitopatología, 33, 54–74. https://www.redalyc.org/articulo.oa?id=61240687004

Reuveni, M., & Cohen, Y. R. (2020). Essential tea tree oil activity against Bremia lactucae in lettuce. Agronomy, 10(6), #836. https://doi.org/10.3390/agronomy10060836

Rienth, M., Crovadore, J., Ghaffari, S., & Lefort, F. (2019). Oregano essential oil vapour prevents Plasmopara viticola infection in grapevine (Vitis Vinifera) and primes plant immunity mechanisms. PLoS ONE, 14(9), e0222854. https://doi.org/10.1371/journal.pone.0222854

Romero, C. (2019). La Situación del Mercado Internacional de la Palta. Ministerio de Agricultura y Riego - MINAGRI. https://bibliotecavirtual.midagri.gob.pe/index.php/analisis-economicos/estudios/2019/28-la-situacion-del-mercado-internacional-de-la-palta/file

Sánchez, E., & Rincón, H. (2021). Evaluación del efecto de bioestimulantes (Quitosano y Gluconatode Cu) en el control de Botrytis cinerea en una variedad de Cannabis sativa L. quimiotipo –CBD, Marinilla, Antioquia, Colombia. [Tesis, Universidad de Ciencias Ambientales y Aplicadas].

Sánchez, M. (2022). Potencial de aislados de Trichoderma spp como promotor de crecimiento en plántulas de tomate (Solanum lycopersicum). Nexo Revista Científica, 35(04), 924–934. https://doi.org/10.5377/nexo.v35i04.15529

Segovia-Siapco, G., Paalani, M., Oda, K., Pribis, P., & Sabaté, J. (2021). Associations between avocado consumption and diet quality, dietary intake, measures of obesity and body composition in adolescents: The teen food and development study. Nutrients, 13(12). #4489. https://doi.org/10.3390/nu13124489

Soto, J., & Cadenas, A. (2018). Uso de inductores de defensa en el control de infecciones ocasionadas por Lasiodiplodia theobromae, en plantones de vid (Vitis vinifera) en Perú. Anales Científicos, 79(2), 353-359. https://doi.org/10.21704/ac.v79i2.1246

Soto, M. (2018). Promotores de defensa químicos y Biológicos contra infecciones por Lasiodiplodia theobromae en vid (Vitis vinifera) [Tesis Magister, Universidad Nacional Agraria la Molina]. https://repositorio.lamolina.edu.pe/handle/20.500.12996/3084

Trinidad-Cruz, J. R., Rincón-Enríquez, G., Quiñones-Aguilar, E. E., Arce-Leal, Á. P., & Leyva-López, N. E. (2019). Inductores de resistencia vegetal en el control de Candidatus Liberibacter asiaticus en árboles de limón (Citrus aurantifolia) mexicano. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 37(2). https://doi.org/10.18781/r.mex.fit.1901-1

Tucuch-Pérez, M. A., Bojorquez-Vega, J. J., Arredondo-Valdes, R., Hernández-Castillo, F. D., & Anguiano-Cabello, J. C. (2021). Actividad biológica de extractos vegetales del semidesierto mexicano para manejo de Fusarium oxysporum de tomate. Ecosistemas y Recursos Agropecuarios, 8(2), e2745. https://doi.org/10.19136/era.a8n2.2745

Úrbez-Torres, J. R., & Gubler, W. D. (2011). Susceptibility of grapevine pruning wounds to infection by Lasiodiplodia theobromae and Neofusicoccum parvum. Plant Pathology, 60(2), 261–270. https://doi.org/10.1111/j.1365-3059.2010.02381.x

Zhang, J., Ma, S., Du, S., Chen, S., & Sun, H. (2019). Antifungal activity of thymol and carvacrol against postharvest pathogens Botrytis cinerea. Journal of Food Science and Technology, 56(5), 2611–2620. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6525678/

Downloads

Published

2023-08-31

How to Cite

Jimenez-Ariza, N. V. ., Soto-Heredia, J. M. ., Casas-Díaz, A. V., & Aragón-Caballero, L. M. . (2023). Possible induction of systemic resistance to Lasiodiplodia theobromae in avocado (Persea americana Mill.) under semi-controlled conditions at La Molina. Peruvian Journal of Agronomy, 7(2), 132-143. https://doi.org/10.21704/pja.v7i2.2053