Comportamiento de germinación de Jatropha curcas L. después de diferentes tiempos de imbibición
DOI:
https://doi.org/10.21704/pja.v1i1.1065Palabras clave:
biofuel, seed water content, seed moisture, germinabilityResumen
Jatropha curcas es una especie importante para la producción de biocombustible. La especie puede sobrevivir y producir frutos y semillas incluso en condiciones de sequía. Para un establecimiento adecuado en el campo es necesario que las semillas tengan una buena calidad en vigor y viabilidad. En este estudio, evaluamos la relación agua de la semilla con diferentes tiempos de imbibición, en agua desionizada, de 0 a 24 horas. Las semillas embebidas se sembraron en bandejas de polietileno con 1,200 g de arena de río. La germinación se registró todos los días durante 25 días. Las semillas con al
menos 10 mm de radícula en la superficie del suelo se consideraron germinadas. Para determinar el contenido de agua de la semilla (SWC), se pesaron 10 semillas en fresco (SFW), turgentes (STW) y peso seco (SDW) a 105°C durante 24 horas. Después de 24 horas de imbibición, nuestros resultados muestran una disminución en la tasa de germinación de 85% a 47%, y un aumento del tiempo de germinación promedio de 4.8 a 7.1 días. La humedad inicial de la semilla utilizada en este experimento fue de aproximadamente 8% y después de 24 horas de imbibición, el SWC fue de alrededor del 60%. La baja humedad inicial en las semillas produce daño por imbibición debido a que la hidratación del tejido tiene lugar de una manera no controlada, de modo que la reconstrucción de las estructuras internas de las células y los orgánulos se vieron afectadas. De acuerdo con el análisis de PCA, la germinación de la semilla tuvo una correlación negativa con el tiempo de imbibición (r = -0.72, p <0.05) y con la conductiva eléctrica (r = -0.88, p <0.05), variables relacionadas con el vigor de la semilla. Este estudio sugiere que la conductividad eléctrica puede ser útil en J. curcas para la prueba de vigor y sus semillas no necesitan previamente imbibición de agua para mejorar la germinación de las semillas con una humedad inicial inferior al 8%.
Descargas
Referencias
References
Abdullah, W.D., Powell, A.A. and Matthews, S. (1991). Association of differences in seed vigour in long bean (Vigna sesquipedalis) with testa colour and imbibition damage. The Journal of Agricultural Science, 116(2), 259-264. https://doi.org/10.1017/s0021859600077662
Abhilash, P.C., Srivastava, P., Jamil, S. and Singh, N. (2010). Revisited Jatropha curcas as an oil plant of multiple benefits: Critical research needs and prospects for the future. Environmental Science and Pollution Research, 18 (1), 127–131. https://doi.org/10.1007/s11356-010-0400-5
Alencar, N.L.M., Gadelha, C.G., Gallao, M.I., Dolder, M.A.H., Prisco, J.T. and Gomes-Filho, E. (2015). Ultrastructural and biochemical changes induced by salt stress in Jatropha curcas seeds during germination and seedling development. Functional Plant Biology, 42(9), 865-874. https://doi.org/10.1071/fp15019
Arcoverde, G.B., Rodrigues, B.M., Pompelli, M.F. and Santos, M.G. (2011). Water relations and some aspects of leaf metabolism of Jatropha curcas young plants under two water deficit levels and recovery. Brazilian Journal of Plant Physiology, 23(2), 123–130. https://doi.org/10.1590/s1677-04202011000200004
Berchmans, H.J. and Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology, 99(6), 1716–1721. https://doi.org/10.1016/j.biortech.2007.03.051
Castellión, M., Matiacevich, S., Buera, P. and Maldonado, S. (2010). Protein deterioration and longevity of quinoa seeds during long-term storage. Food Chemistry, 121(4), 952–958. https://doi.org/10.1016/j.foodchem.2010.01.025
Chen, B., Landsman-Ross, N., Naughton, R. and Olenyik, K. (2008). Jatropha curcas L.: Biodiesel solution or all hype? A scientific, economic and political analysis of the future energy crop. In Energy and Energy policy, Spring 2008 (pp. 1001–1005) Chicago: Chicago University.
Copeland, L.O. and McDonald, M.B. (1999). Seed longevity and deterioration. In Principles of Seed Science and Technology (pp. 181-220). Boston: Springer. https://doi.org/10.1007/978-1-4615-1783-2_8
De Mendiburu, F. D. (2015). Agricolae: Statistical procedures for agricultural research, [on line]. Perú. Retrieved from: http://CRAN.R-project.org/package=agricolae [november, 2017]
Dharma, S., Hassan, M.H., Ong, H.C., Sebayang, A.H., Silitonga, A.S., Kusumo, F. and Milano, J. (2017). Experimental study and prediction of the performance and exhaust emissions of mixed Jatropha curcas-Ceiba pentandra biodiesel blends in diesel engine using artificial neural networks. Journal of Cleaner Production, 164, 618–633. https://doi.org/10.1016/j.jclepro.2017.06.065
Duke, S.H. and Kakefuda, G. (1981). Role of the testa in preventing cellular rupture during imbibition of legume seeds. Plant Physiology, 67(3), 449–456. https://doi.org/10.1104/pp.67.3.449
Elhag, A.Z. and Gafar, M.O. (2014). Effect of sodium chloride on growth of jatropha (Jatropha curcas L.) young transplants. Universal Journal of Plant Science, 2, 19–22.
Ginwal, H., Phartyal, S., Rawat, P. and Srivastava, R. (2005). Seed source variation in morphology, germination and seedling growth of Jatropha curcas Linn. in central India. Silvae Genetica 54(2), 76–79. DOI: 10.1515/sg-2005-0012
Hampton, J.G. and Tekrony, D.M. (1995). Handbook of vigour test methods. Switzerland: The International Seed Testing Association.
Hobbs, P.R. and Obendorf, R.L. (1972). Interaction of initial seed moisture and imbibitional temperature on germination and productivity of soybean. Crop Science, 12(5), 664-667. https://doi.org/10.2135/cropsci1972.0011183x001200050033x
Husson, F., Josse, J., Le, S. and Mazet, J. (2017). FactoMineR: Multivariate exploratory data analysis and data mining, [on line]. Retrieved from: https://rdrr.io/cran/FactoMineR/ [november, 2017]
Ishida, N., Kano, H., Kobayashi, T. and Yoshida, T. (1988). Analysis of physical states of water in soybean seeds by NMR. Agricultural and Biological Chemistry, 52(11), 2777–2781. https://doi.org/10.1271/bbb1961.52.2777
Kestring, D., Klein, J., Menezes, L.C.C.R. de, and Rossi, M.N. (2009). Imbibition phases and germination response of Mimosa bimucronata (Fabaceae: Mimosoideae) to water submersion. Aquatic Botany, 91(2), 105–109. https://doi.org/10.1016/j.aquabot.2009.03.004
Khan, T.Y., Atabani, A., Badruddin, I.A., Badarudin, A., Khayoon, M. and Triwahyono, S. (2014). Recent scenario and technologies to utilize non-edible oils for biodiesel production. Renewable and Sustainable Energy Reviews, 37, 840–851. https://doi.org/10.1016/j.rser.2014.05.064
Koizumi, M., Kikuchi, K., Isobe, S., Ishida, N., Naito, S. and Kano, H. (2008). Role of seed coat in imbibing soybean seeds observed by micro-magnetic resonance imaging. Annals of Botany 102(3), 343–352. https://doi.org/10.1093/aob/mcn095
Koornneef, M., Bentsink, L. and Hilhorst, H. (2002). Seed dormancy and germination. Current Opinion in Plant Biology, 5(1), 33–36. https://doi.org/10.1016/s1369-5266(01)00219-9
Lozano Isla, F., Benites Alfaro, O. and Pompelli, M.F. (2017). GerminaR: Germination indexes for seed germination variables for ecophysiological studies, [on line]. Retrieved from: https://rdrr.io/cran/GerminaR/ [november, 2017]
Marcos-Filho, J. (1998). New approaches to seed vigor testing. Scientia Agricola, 55, 27–33. https://doi.org/10.1590/s0103-90161998000500005
Matthews, S. and Hosseini, M.K. (2006). Mean germination time as an indicator of emergence performance in soil of seed lots of maize (Zea mays). Seed Science and Technology, 34(2), 339–347. https://doi.org/10.15258/sst.2006.34.2.09
Matthews, S. and Powell, A. (2006). Electrical conductivity vigour test: Physiological basis and use. Seed Testing International 131, 32–35.
Moncaleano-Escandon, J., Silva, B.C., Silva, S.R., Granja, J.A., Alves, M.C.J. and Pompelli, M.F. (2013). Germination responses of Jatropha curcas L. seeds to storage and aging. Industrial Crops and Products, 44, 684–690. https://doi.org/10.1016/j.indcrop.2012.08.035
Pandey, V.C., Singh, K., Singh, J.S., Kumar, A., Singh, B. and Singh, R.P. (2012). Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renewable and Sustainable Energy Reviews, 16(5), 2870–2883. https://doi.org/10.1016/j.rser.2012.02.004
Parrish, D.J. and Leopold, A.C. (1977). Transient changes during soybean imbibition. Plant Physiology 59, 1111–1115. https://doi.org/10.1104/pp.59.6.1111
Pollock, B., Roos, E. and Manalo, J. (1969). Vigor of garden bean seeds and seedlings influenced by initial seed moisture, substrate oxygen, and imbibition temperature. Journal of the American Society for Horticultural Science, 94, 577–584.
Pompelli, M.F., Barata-Luís, R., Vitorino, H.S., Gonçalves, E.R., Rolim, E.V., Santos, M.G., Almeida-Cortez, J.S., Ferreira, V.M., Lemos, E.E. and Endres, L. (2010). Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery. Biomass and Bioenergy, 34(8), 1207–1215. https://doi.org/10.1016/j.biombioe.2010.03.011
Pompelli, M.F., Rocha Gomes Ferreira, D.T. da, Silva Cavalcante, P.G. da, Lima Salvador, T. de, Hsie, B.S. de, and Endres, L. (2010). Environmental influence on the physico-chemical and physiological properties of Jatropha curcas seeds. Australian Journal of Botany, 58(6), 421-427. https://doi.org/10.1071/bt10102
Powell, A.A. (1986). Cell membranes and seed leachate conductivity in relation to the quality of seed for sowing. Journal of Seed Technology, 10(2), 81–100.
Powell, A.A., Oliveira, M.D.A. and Matthews, S. (1986). The role of imbibition damage in determining the vigour of white and coloured seed lots of dwarf french beans (Phaseolus vulgaris). Journal of Experimental Botany, 37(5), 716–722. https://doi.org/10.1093/jxb/37.5.716
PowellL, A.A. and Matthews, S. (1981). A physical explanation for solute leakage from dry pea embryos during imbibition. Journal of Experimental Botany 32(5), 1045–1050. https://doi.org/10.1093/jxb/32.5.1045
Pukacka, S., Ratajczak, E. and Kalemba, E. (2009). Non-reducing sugar levels in beech (Fagus sylvatica) seeds as related to withstanding desiccation and storage. Journal of Plant Physiology, 166(13), 1381–1390. https://doi.org/10.1016/j.jplph.2009.02.013
R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, [on line]. Vienna, Austria. Retrieved from: http://www.r-project.org/ [november, 2017]
Ribeiro, P.R., Willems, L.A., Mudde, E., Fernandez, L.G., Castro, R.D. de, Ligterink, W. and Hilhorst, H.W. (2015). Metabolite profiling of the oilseed crop Ricinus communis during early seed imbibition reveals a specific metabolic signature in response to temperature. Industrial Crops and Products, 67, 305–309. https://doi.org/10.1016/j.indcrop.2015.01.067
Ruttanaruangboworn, A., Chanprasert, W., Tobunluepop, P. and Onwimol, D. (2017). Effect of seed priming with different concentrations of potassium nitrate on the pattern of seed imbibition and germination of rice (Oryza sativa L.). Journal of Integrative Agriculture 16(3), 605–613. https://doi.org/10.1016/s2095-3119(16)61441-7
Sánchez-Salas, J., Jurado, E., Flores, J., Estrada-Castillón, E. and Muro-Pérez, G. (2012). Desert species adapted for dispersal and germination during floods: Experimental evidence in two Astrophytum species (Cactaceae). Flora - Morphology, Distribution, Functional Ecology of Plants, 207(10), 707–711. https://doi.org/10.1016/j.flora.2012.08.002
Sunil, N., Kumar, V., Sujatha, M., Rao, G.R. and Varaprasad, K.S. (2013). Minimal descriptors for characterization and evaluation of Jatropha curcas L. germplasm for utilization in crop improvement. Biomass and Bioenergy, 48, 239–249. https://doi.org/10.1016/j.biombioe.2012.11.008
Thornton, J.M., Powell, A.A. and Mattews, S. (1990). Investigation of the relationship between seed leachate conductivity and the germination of Brassica seed. Annals of Applied Biology, 117(1), 129–135. https://doi.org/10.1111/j.1744-7348.1990.tb04201.x
Vertucci, C.W. and Leopold, A.C. (1984). Bound water in soybean seed and its relation to respiration and imbibitional damage. Plant Physiology, 75, 114–117. https://doi.org/10.1104/pp.75.1.114
Wei, T. and Simko, V. (2017). Corrplot: Visualization of a correlation matrix, [on line]. Retrieved from: https://github.com/taiyun/corrplot [november, 2017]
Windauer, L., Altuna, A. and Benech-Arnold, R. (2007). Hydrotime analysis of Lesquerella fendleri seed germination responses to priming treatments. Industrial Crops and Products 25(1), 70–74. https://doi.org/10.1016/j.indcrop.2006.07.004
Windauer, L.B., Martinez, J., Rapoport, D., Wassner, D. and Benech-Arnold, R. (2011). Germination responses to temperature and water potential in Jatropha curcas seeds: A hydrotime model explains the difference between dormancy expression and dormancy induction at different incubation temperatures. Annals of Botany 109(1), 265–273. https://doi.org/10.1093/aob/mcr242
Yaklich, R.W. and Kulik, M.M. (1979). Evaluation of vigor tests in soybean seeds: Relationship of the standard germination test, seedling vigor classification, seedling length, and tetrazolium staining to field performance1. Crop Science 19(2), 247-252 https://doi.org/10.2135/cropsci1979.0011183x001900020019x
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2017 F. Lozano, P. Miranda, M. Pompelli
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.