Etiology and control of Gypsophila paniculata L. stem base rot in the Caraz Valley, Ancash

Autores/as

  • R. Aguilar-Anccota Universidad Nacional Agraria La Molina. Lima, Perú.
  • L. Mattos-Calderon Universidad Nacional Agraria La Molina. Lima, Perú.

DOI:

https://doi.org/10.21704/pja.v4i1.1461

Palabras clave:

Gypsophila, stem base rot, Rhizoctonia solani, Trichoderma spp.

Resumen

Gypsophila is an ornamental plant whose flowers are economically important, which is cultivated in the Callejón de Huaylas valley-Ancash. Recently, cultivated Gypsophila fields have shown diseased plants characterized by stem base rot, which has been followed by a reduction in vigor and the collapse and death of plants. Therefore, the objectives of this research were to describe the symptomatology of the disease, identify the causative agent of the disease, and prove how effective fungicides and biological control agents (BCA) are in controlling the disease using in vitro and field experiments. To isolate the pathogen, symptomatic plant tissue samples were washed, cut into small pieces, disinfected in 1% sodium hypochlorite solution for 1 min, rinsed twice with sterilized water, and air-dried on paper towels. The samples were seeded on Petri dishes containing potato dextrose agar media and incubated at 25 °C. A pathogenicity test was conducted in healthy Gypsophila seedlings, which were grown in a sterilized substrate, using mechanical inoculation on the stem base and agar disks colonized by the pathogen-mycelium. Then the pathogen was reisolated from symptomatic inoculated Gypsophila seedlings. The “poisoned medium” technique was used to conduct the in vitro fungicide test, while the “dual method” was used to conduct the bio controller’s test. The results of the pathogenicity test and in vitro and field experiments showed that Rhizoctonia solani is the causative agent of the stem base Gypsophila disease, and at both assayed doses, the fungicides Rovral, Benopoint, Parachupadera, Vitavax, and Homai completely inhibited the mycelial growth of R. solani. Moreover, the BCAs Trichoderma harzianum and T. viride showed higher in vitro growth rates than R. solani and completely colonized the pathogen-mycelium. Under field conditions, the incidence of the disease in field plots treated with T. harzianum was 12.5% lower than in the control treatment, which showed 51.28% incidence of the disease. In addition, Gypsophila plants harvested from plots treated with T. harzianum exhibited higher numbers of flower stalks per plant and a higher fresh weight compared to the control treatment.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Agrios, G. N. (1995). Fitopatología. Tercera edición traducida del inglés por Manuel Guzmán Ortiz. S.A. de C.V. México. Editorial Limusa. 837 p.

Barnett, H. L., & Hunter, B. B. (1998). Illustrated genera of imperfect fungi. Editorial Burgess Publishing Company.

Chet, I. (1990). Biological control of soil-borne plant pathogens with fungal antagonists in combinations with soil treatments. In D. Hornby (Ed.), Biological Control of Soil-borne Plant Pathogens. (pp. 15–25). Wallingford, UK: C.A.B. International.

Cook, R. J., & Baker, K. F. (1983). The nature and practice of biological control of plant Pathogens. In Phytophthora. Its biology, taxonomy, ecology and pathology (pp. 190–195). St. Paul, MN: APS. Publishing.

Correa, S., Mello, M., Ávila, Z., Minare, L., Pádua, R., & Gomes, D. (2007). Cepas de Trichoderma spp. para el control biológico de Sclerotium rolfsii SAAC. Fitosanidad, 11(1), 3–9.

Elad, Y., Chet, I., & Katan, J. (1980). Trichoderma harzianum: A biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology, 70(2), 119–121. doi:10.1094/Phyto-70-119

Erwin, D. C., & Ribeiro, O. K. (1996). Phyotphthora diseases worldwide. St. Paul, MN: American Phytopathological Society.

Ezziyyani, M., Pérez, C., Requena, M., & Rubio, L. (2004). Biocontrol por Streptomyces rochei-ziyani, de la podredumbre del pimiento (Capsicum annuum L.) causada por Phytophthora capsici. Anales de Biología, 26, 69–78.

French, E. R., & Hebert, T. T. (1980). Métodos de investigación fitopatológica. San José, Costa Rica. Editorial IICA. 277 p.

Galeano, M., Méndez, F., & Urbaneja, A. (2009). Efecto de Trichoderma harzianum Rifai (Cepa T-22) sobre cultivos hortícolas. Departamento I+D. Koppert Biological Systems.

Goodman, R. N., Zoltan, K., & Wood, K. R. (1986). The biochemistry and physiology of plant disease. United States of America. University of Missouri Press.

Goulart, A. C. P. (2002). Efeito do tratamento de sementes de algodão com fungicidas no controle do tombamento de plântulas causado por Rhizoctonia solani. Fitopatología Brasileira, 27(4), 399–402. http://dx.doi.org/10.1590/S0100-41582002000400011

Guédeza, C., Cañizaleza, L., Castilloa, C., & Olivarb, R. (2012). Evaluación in vitro Trichoderma harzianum para el control de Rhizoctonia solani, en plantas de tomate. Revista de la Sociedad Venezolana de Microbiología, 32, 44–49.

Harman, G. E. (1996). Trichoderma for biocontrol of plant pathogens: From basic research to commercialized products. 6p. NY: Cornell University NYSAES Departments of Horticultural Science and of Plant Pathology. http://web.entomology.cornell.edu/shelton/cornell-biocontrol-conf/talks/harman.html

Hohmann, P. E., Jones, E. E., Hill, R. A., & Stewart, A. (2011). Understanding Trichoderma in the root system of Pinus radiata: Associations between rhizosphere colonization and growth promotion for commercially grown seedlings. Fungal Biology, 115(8), 759–767. https://doi.org/10.1016/j.funbio.2011.05.010

Lewis, J. A., & Papavizas, G. C. (1987). Permeability changes in hyphae of Rhizoctonia solani induced by gremlin’s preparations of Trichoderma and Gliocladium. Phytopathology, 77(5), 699–703. doi:10.1094/Phyto-77-699

Mont, R. M. (2002). Manejo Integrado de Enfermedades de las Plantas. Lima-Perú. Ministerio de Agricultura. Servicio Nacional de Sanidad Agraria. 210 p.

Nampoothiri, K. M., Baiju, T. V., Sandhya, C., Sabu, A., Szakacs, G., & Pandey, A. (2004). Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochemistry, 39(11), 1583–1590. https://doi.org/10.1016/S0032-9592(03)00282-6

Poddar, R. K., Singh, D. V., & Dubey, S. C. (2004). Management of chickpea wilt through combination of fungicides and bioagents. Indian Phytopathology, 57, 39–43.

Rubio-Reque, G., Baltodano-Sánchez, F., Abanto-Campos, L., Wilson-Krugg, J., & Muñoz-Ríos, M. (2008). Resistencia in vitro de Rhizoctonia solani y Fusarium oxysporum a los fungicidas Benzomil 500. Rhizolex-T y Homai. REBIOL, 28(2).

Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow mildewing resistance in Knox wheat. Phytopathology, 77(8), 1051–1056. doi:10.1094/Phyto-67-1051

Silveira, S. Fd, Alfenas, A. C., Maffia, L. A., & Suzuki, M. S. (2003). Controle químico da mela de estacas e da queima de folhas de eucalipto, causadas por Rhizoctonia spp. Fitopatologia Brasileira, 28(6), 642–649. https://doi.org/10.1590/S0100-41582003000600010

Sneh, B., Burpee, L., & Ogoshi, A. (1991). Identification of Rhizoctonia species. St. Paul, MN: American Phytopathological Society.

Van Der Plaats-Niterink, A. (1981). Monograph of the genus Pythium. In Studies in Mycology N° 21. http://www.wi.knaw.nl/publications/1021/content_files/content.htm

Descargas

Publicado

2020-04-29

Número

Sección

Artículos

Cómo citar

Aguilar-Anccota, R., & Mattos-Calderon, L. (2020). Etiology and control of Gypsophila paniculata L. stem base rot in the Caraz Valley, Ancash. Peruvian Journal of Agronomy, 4(1), 17-26. https://doi.org/10.21704/pja.v4i1.1461