Manejo de Chloridea virescens (Noctuidae) en arándanos (Vaccinium corymbosum L.) para promover su cultivo sostenible en Perú: Una revisión
DOI:
https://doi.org/10.21704/pja.v6i1.1893Palabras clave:
Resistencia cuantitativa, arándano silvestre, elección asistida, mejora genética, Chloridia virescensResumen
Se realizó una revisión de la literatura actual y específica para elaborar una propuesta de manejo de Chloridia virescens en el cultivo del arándano (Vaccinium corymbosum L.), desarrollando estrategias en cada componente del Manejo Integrado de Plagas (MIP), incluyendo el Control Cultural, el Control Etológico, el Control Biológico y el Control Químico (PBUA y PQUA). Asimismo, se proponen pasos en el mejoramiento genético para la resistencia cuantitativa del arándano a esta plaga (Lepidoptera: Noctuidae) utilizando parientes silvestres de este cultivo como fuente de genes de resistencia.
Descargas
Referencias
Abo-Bakr, A., Fahmy, E. M., Badawy, F., Abd El-latif, A. O., & Moussa, S. (2020). Isolation and characterization of the local entomopathogenic bacterium, Bacillus thuringiensis isolates from different Egyptian soils. Egyptian Journal of Biological Pest Control, 30(1), 1–9.
Adalat, R., Saleem, F., Crickmore, N., Naz, S., & Shakoori, A. R. (2017). In vivo crystallization of three-domain Cry toxins. Toxins, 9(3), 80.
Adhikari, L., & Missaoui, A. M. (2019). Quantitative trait loci mapping of leaf rust resistance in tetraploid alfalfa. Physiological and Molecular Plant Pathology, 106, 238–245.
Agrodata Perú. (2020a). Arándanos Perú Exportación 2019-diciembre. https://www.agrodataperu.com/2020/01/arandanos-peru-exportacion-2019-diciembre.html
Agrodata Perú. (2020b). Arándanos: ¿por qué si el Perú es el primer exportador en el mundo aún no conquista nuestra mesa? https://www.agrodataperu.com/2020/03/arandanos-peru-primer-exportador-mundial.html
Asea, G., Vivek, B. S., Bigirwa, G., Lipps, P. E., & Pratt, R. C. (2009). Validation of consensus quantitative trait loci associated with resistance to multiple foliar pathogens of maize. Phytopathology, 99(5), 540–547.
Bassil, N., Bidani, A., Nyberg, A., Hummer, K., & Rowland, L. J. (2020). Microsatellite markers confirm identity of blueberry (Vaccinium spp.) plants in the USDA-ARS National Clonal Germplasm Repository collection. Genetic Resources and Crop Evolution, 1–17.
Blanco, C. A., Terán-Vargas, A. P., Abel, C. A., Portilla, M., Rojas, M. G., Morales-Ramos, J. A., & Snodgrass, G. L. (2008). Plant host effect on the development of Heliothis virescens F. (Lepidoptera: Noctuidae). Environmental Entomology, 37(6), 1538–1547.
Bravo A., Gill S.S., Soberón M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49: 423–435.
Buzeta, A. (1997). Chile: Bayas para el 2000. Fundación Chile 133 p. Concepción, facultad de Agronomía. Chile.
CARE Perú. (August, 2006). Manejo integral de plagas - Guia para pequeños productores agrarios. Lima Perú, s.e.
Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual review of plant biology, 70, 667–697.
Chen, S., Yao, Y., Zhang, Y., & Fan, G. (2020). CRISPR system: Discovery, development and off-target detection. Cellular Signalling, 70, 109577.
Cisternas A., Ernesto. (2013). Insect pest of economic importance associated with blueberry. Cap. 8 Blueberry Manual. Chile.
Cock, M. J. (2019). Unravelling the status of partially identified insect biological control agents introduced to control insects: an analysis of BIOCAT2010. BioControl, 64(1), 1–7.
Contreras-Pérez, M., Hernández-Salmerón, J., Rojas-Solís, D., Rocha-Granados, C., del Carmen Orozco-Mosqueda, M., Parra-Cota, F. I., ... & Santoyo, G. (2019). Draft genome analysis of the endophyte, Bacillus toyonensis COPE52, a blueberry (Vaccinium spp. var. Biloxi) growth-promoting bacterium. 3 Biotech, 9(10), 1–6.
Deguine, J. P., Aubertot, J. N., Flor, R. J., Lescourret, F., Wyckhuys, K. A., & Ratnadass, A. (2021). Integrated pest management: good intentions, hard realities. A review. Agronomy for Sustainable Development, 41(3), 1–35
Dilas-Jiménez, J. O., & Cernaqué, O. (2017). El sector cafetalero peruano: Un enfoque a la CTI para su competitividad. Universidad Continental.
Dilas-Jiménez, J., Zapata-Ruiz, D., Arce-Almenara, M., Ascurra-Toro, D., & Mugruza-Vassallo, C. (2020). Análisis comparativo de los costos de producción y rentabilidad de los cafés especiales con certificación orgánica y sin certificación. South Sustainability, 1(2), e017.
Downes, S., Parker, T., & Mahon, R. (2010). Incipient resistance of Helicoverpa punctigera to the Cry2Ab Bt toxin in Bollgard II® cotton. PLoS One, 5(9), e12567.
Erst, A. A., Gorbunov, A. B., & Erst, A. S. (2018). Effect of concentration, method of auxin application and cultivation conditions on in vitro rooting of bog blueberry (Vaccinium uliginosum L.). Journal of Berry Research, 8(1), 41–53.
Eskov, E. K. (2017). The diversity of ethological and physiological mechanisms of acoustic communication in insects. Biophysics, 62(3), 466–478.
Food and Agriculture Organization. (2002). Manual Práctico - Manejo Integrado de Plagas y Enfermedades en cultivos hidropónicos en invernadero. s.l., s.e.
Food and Agriculture Organization. (2014). The international code of conduct on pesticide management.
Febres, F. (2013). Resultados en Arándano deben ser vistos con serenidad. Revista Red Agrícola no. 11, 6–9.
Feitelson J. S.; Payne J., & Kim L. (1992). Bacillus thuringiensis: insects and beyond. Nat. Biotech. 10, 271–275.
Flores, A., Alcarraz, M., Woolcott, J. C., Benavides, E., Godoy, J., Huerta, D., ... & Patiño, A. (2011). Biodiversidad de Bacillus thuringiensis aislados de agroecosistemas peruanos y evaluación del potencial bioinsecticida. Ciencia e Investigación, 14(1), 30–35.
Gahan, L. J., Ma, Y. T., MacgregorCoble, M. L., Gould, F., Moar, W. J., & Heckel, D. G. (2005). Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). Journal of economic entomology, 98(4), 1357–1368.
García Rubio, JC; Gonzáles de Lena, G; Ciordia Ara, M. (2018). El cultivo del arándano en el norte de España. Asturias, España, s.e. [19 jul. 2020]. http://www.serida.org/pdfs/7452.pdf
Gargurevich, G. (2017). Biloxi ¿la red globe de los arándanos? Revista Red agrícola, 39(1), 24-26.
Garkava-Gustavsson, L., Persson, H. A., Nybom, H., Rumpunen, K., Gustavsson, B. A., & Bartish, I. V. (2005). RAPD-based analysis of genetic diversity and selection of lingonberry (Vaccinium vitis-idaea L.) material for ex situ conservation. Genetic Resources and Crop Evolution, 52(6), 723–735.
Gassmann, A. J. (2016). Resistance to Bt maize by western corn rootworm: insights from the laboratory and the field. Current opinion in insect science, 15, 111–115.
Gerber D., & Shai Y. (2000). Insertion and organization within membranes of the δ-endotoxin pore-forming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide. J. Biol. Chem., 275, 23602–23607.
Gestión. (July, 2019). Producción de arándanos en Perú crece 796% más que hace cuatro años, pero su precio en chacra cae | Economía (on line)). https://gestion.pe/economia/arandanos-produccion-minagri-produccion-de-arandanos-en-peru-crece-796-mas-que-hace-cuatro-anos-pero-su-precio-en-chacra-cae-noticia/?ref=gesr
Grove, M., Kimble, W., & McCarthy, W. J. (2001). Effects of individual Bacillus thuringiensis insecticidal crystal proteins on adult Heliothis virescens (F.) and Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). BioControl, 46(3), 321–335.
Grimi, D. A., Parody, B., Ramos, M. L., Machado, M., Ocampo, F., Willse, A., ... & Head, G. (2018). Field‐evolved resistance to Bt maize in sugarcane borer (Diatraea saccharalis) in Argentina. Pest management science, 74(4), 905–913.
Gunning, R. V., Dang, H. T., Kemp, F. C., Nicholson, I. C., & Moores, G. D. (2005). New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Applied and environmental microbiology, 71(5), 2558–2563.
Guo, Y. X., Zhao, Y. Y., Zhang, M., & Zhang, L. Y. (2019). Development of a novel in vitro rooting culture system for the micropropagation of highbush blueberry (Vaccinium corymbosum) seedlings. Plant Cell, Tissue and Organ Culture (PCTOC), 139(3), 615–620.
Gurr, G. M., Wratten, S. D., Tylianakis, J., Kean J., & Keller M. (2004). Providing Plant Foods for Insect Natural Enemies in Farming Systems: Balancing Practicalities and Theory, in F.L.
Hancock, J. (2009). Producción de arándano Alto. Agronomijas Vēstis, (12), 35–38.
Jiménez, EM. (July, 2009). Métodos de Control de Plagas. Managua, Nicaragua, s.e. https://cenida.una.edu.ni/relectronicos/RENH10J61me.pdf
Jurat-Fuentes, J. L., & Crickmore, N. (2017). Specificity determinants for Cry insecticidal proteins: Insights from their mode of action. Journal of invertebrate pathology, 142, 5–10.
Kamatham, S., Munagapati, S., Manikanta, K. N., Vulchi, R., Chadipiralla, K., Indla, S., & Allam, U. S. (2021). Recent advances in engineering crop plants for resistance to insect pests. Egypt J Biol Pest Control, 31, 120.
Kolmer, J. A. (1996). Genetics of resistance to wheat leaf rust. Annual review of phytopathology, 34(1), 435–455.
Landis, D., Wratten, S., & Gurr, G. (2000). Habitat management to conserve natural enemies of arthropod pests in Agriculture. Annual review of entomology, 45, 175–201. https://doi.org/10.1146/annurev.ento.45.1.175
Liu, B., Zhang, S., Zhu, X., Yang, Q., Wu, S., Mei, M., ... & Leung, H. (2004). Candidate defense genes as predictors of quantitative blast resistance in rice. Molecular Plant-Microbe Interactions, 17(10), 1146–1152.
Liu, Y., Wang, Y., Shu, C., Lin, K., Song, F., Bravo, A., ... & Zhang, J. (2018). Cry64Ba and Cry64Ca, Two ETX/MTX2-type Bacillus thuringiensis insecticidal proteins active against hemipteran pests. Appl. Environ. Microbiol., 84(3), e01996-17.
Llanos, A., & Apaza, W. (2018). Antifungal activity of five chemical and two biological fungicides for the management of Botrytis cinerea, causal agent of Gray Mold in Strawberry. Peruvian Journal of Agronomy, 2(1), 1–8
Ministerio de Desarrollo Agrario y Riego. (August, 2020). El arándano en el Perú y en el mundo- Producción, Comercio y Perspectivas. Lima. Perú. Pág. 8.
Meiners, J., Schwab, M., & Szankowski, I. (2007). Efficient in vitro regeneration systems for Vaccinium species. Plant Cell, Tissue and Organ Culture, 89(2-3), 169–176.
Meyer, H. J. & Prinsloo N. (2003). Assessment of the potential of blueberry production in South Africa. Small Fruits Review, 2, 3–21.
Moloney, C., Griffin, D., Jones, P. W., Bryan, G. J., McLean, K., Bradshaw, J. E., & Milbourne, D. (2010). Development of diagnostic markers for use in breeding potatoes resistant to Globodera pallida pathotype Pa2/3 using germplasm derived from Solanum tuberosum ssp. andigena CPC 2802. Theoretical and applied genetics, 120(3), 679–689.
Morales, C. G. (2017). Manual de manejo agronómico del arándano (on line). Chile, s.e. [2 jul. 2020]. https://www.indap.gob.cl/docs/default-source/default-document-library/manual-arandanos.pdf?sfvrsn=0
Morozov, O. V. (2007). The Prospects for Using Vaccinium uliginosum L.× Vaccinium vitis-idaea L. Hybrid in Breeding. International journal of fruit science, 6(4), 43–56.
Ochoa, G., & Arrivillaga, J. (2009). Bacillus thuringiensis: Avances y perspectivas en el control biológico de Aedes aegypti. Boletín de Malariología y Salud Ambiental, 49(2), 181–191.
Qi, H., Wang, N., Qiao, W., Xu, Q., Zhou, H., Shi, J., ... & Huang, Q. (2017). Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of three plant morphological traits in upland cotton (Gossypium hirsutum L.). Euphytica, 213(4), 83.
Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature protocols, 8(11), 2281–2308.
Rashki, M., Maleki, M., Torkzadeh-Mahani, M., Shakeri, S., & Nezhad, P. S. (2021). Isolation of Iranian Bacillus thuringiensis strains and characterization of lepidopteran-active cry genes. Egyptian Journal of Biological Pest Control, 31(1), 1–10.
Rivadeneira, M., & Carlazara G. (2011). Comportamiento fenológico de variedades tradicionales y nuevas de arándanos. Instituto Nacional de Tecnología agropecuaria. Argentina.
Rodríguez-Saona, C., Cloonan, K. R., Sanchez-Pedraza, F., Zhou, Y., Giusti, M. M., & Benrey, B. (2019). Differential susceptibility of wild and cultivated blueberries to an invasive frugivorous pest. J Chem Ecol.45(3).
Santos-Amaya, O. F., Rodrigues, J. V., Souza, T. C., Tavares, C. S., Campos, S. O., Guedes, R. N., & Pereira, E. J. (2015). Resistance to dual-gene Bt maize in Spodoptera frugiperda: selection, inheritance, and cross-resistance to other transgenic events. Scientific reports, 5, 18243.
Sauka, D. (2007). Estudio de genes y proteínas insecticidas de aislamientos nativos de Bacillus thuringiensis. Aportes al conocimiento de su distribución y toxicidad en plagas agrícolas. [Doctoral dissertation, UBA].
Sauka, D. H., & Benintende G. B. (2008). Bacillus thuringiensis: generalidades. Un acercamiento a su empleo en el biocontrol de insectos lepidópteros que son plagas agrícolas. Revista Argentina de Microbiología, 40 (2), 124–140.
Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., & Feitelson J. (1998). Bt and its pesticidal cristal proteins. Microbiol. Mol. Biol. Rev. 62, 775–806.
Sierra Exportadora. (2011). Perfil Comercial-Arándano Deshidratado. Asociación Regional de Exportadores de Lambayeque. Área de Comercio Exterior.
Sierra Exportadora – Presidencia del Consejo de Ministros de Perú (PCM). (2012). Estudio de prefactibilidad para la producción y comercialización de arándanos (Vaccinium corymbosum L.) en condiciones de valles andinos. Estudio elaborado por Ing. Liliana Benavides. 146 pp.
Singh, R. P., Huerta-Espino, J. U. L. I. O., & William, H. M. (2005). Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish Journal of Agriculture and Forestry, 29(2), 121–127.
Tabashnik, B. E., & Carrière, Y. (2017). Surge in insect resistance to transgenic crops and prospects for sustainability. Nature Biotechnology, 35(10), 926.
Takahashi, T. A., Nishimura, G., Carneiro, E., & Foerster, L. A. (2019). First record of Peridroma saucia Hübner (Lepidoptera: Noctuidae) in transgenic soybeans. Revista Brasileira de entomologia, 63(3), 199–201.
Peterson, B., Bezuidenhout, C. C., & Van den Berg, J. (2017). An overview of mechanisms of Cry toxin resistance in lepidopteran insects. Journal of Economic Entomology, 110(2), 362–377.
Vachon V., Laprade R., & Schwartz J. L. (2012). Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J. Invertebr. Pathol. In press.
Vallejo, F., & Estrada, E. (2002). Mejoramiento genético de plantas. [Universidad Nacional de Colombia]. DIPAL. Palmira, Colombia. 404 p.
Van den Berg, J., Hilbeck, A., & Bøhn, T. (2013). Pest resistance to Cry1Ab Bt maize: Field resistance, contributing factors and lessons from South Africa. Crop Protection, 54, 154–160.
Yang, Y., Liu, G., Chen, X., Liu, M., Zhan, C., Liu, X., & Bai, Z. (2020). High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris. Enzyme and Microbial Technology, 138. 109556.
Zhang, P., Guo, C., Liu, Z., Bernardo, A., Ma, H., Jiang, P., ... & Bai, G. (2020). Quantitative trait loci for Fusarium head blight resistance in wheat cultivars Yangmai 158 and Zhengmai 9023. The Crop Journal, 9(1), 143–153.
Zhang, X., Gao, T., Peng, Q., Song, L., Zhang, J., Chai, Y., ... & Song, F. (2018). A strong promoter of a non-cry gene directs expression of the cry1Ac gene in Bacillus thuringiensis. Applied microbiology and biotechnology, 102(8), 3687–3699.
Zhou, Y., Wu, Z., Zhang, J., Wan, Y., Jin, W., Li, Y., & Fang, X. (2020). Bacillus thuringiensis novel toxin Epp is toxic to mosquitoes and Prodenia litura larvae. Brazilian Journal of Microbiology, 1–9
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2022 Mónica Narrea Cango, Elías Huanuqueño Coca, Josué Otoniel Dilas-Jiménez, Jhon Anthony Vergara Copacondori
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.