Evaluación varietal de genotipos prometedores de arroz de primavera en Bagdula, Pyuthan, Nepal

Autores/as

  • Krishna Raj Pandey Agriculture and Forestry University, Faculty of Agriculture, Rampur, Chitwan, Nepal.
  • Asbin BK Agriculture and Forestry University, Faculty of Agriculture, Rampur, Chitwan, Nepal.
  • Uday Kumar Singh Agriculture and Forestry University, Faculty of Agriculture, Rampur, Chitwan, Nepal.
  • Yagya Raj Joshi Agriculture and Forestry University, Faculty of Agriculture, Rampur, Chitwan, Nepal.
  • Aashish Bhandari Agriculture and Forestry University, Faculty of Agriculture, Rampur, Chitwan, Nepal.

DOI:

https://doi.org/10.21704/pja.v7i3.2009

Palabras clave:

Rendimiento Biológico, Macollos efectivos, índice de cosecha, Longitud de la panícula, Rendimiento de paja

Resumen

Se llevó a cabo un experimento de campo para evaluar el comportamiento (crecimiento, rendimiento y características que contribuyen al rendimiento) de cinco genotipos diferentes de arroz de primavera. El estudio se llevó a cabo en el campo de un agricultor en Bagdula, Pyuthan, bajo la supervisión de PMAMP, Rice Zone, Pyuthan, desde marzo hasta junio del 2021. Fueron evaluados cinco genotipos de arroz de primavera, incluidos PR-126, HHZ 25-DT9-Y1-Y1, IR 103575-76-1-1-B, IR 99742:2-11-17-1-9-B e IR 86515-19-1-2-1-1-1-1, mediante un diseño de bloques completos al azar (DBCA) con 4 repeticiones cada uno. Se midieron los parámetros que contribuyen al rendimiento y crecimiento de la planta, se ingresaron en MS-Excel y se analizaron usando el software R-Studio. Las plántulas de arroz se sembraron en una cama húmeda en un vivero y se trasplantaron a una distancia de 20 cm x 20 cm (3 plántulas por golpe). La mayor altura de planta (82.25 cm) y número de macollos por golpe (10.40) se registró en IR 86515-19-1-2-1-1-1-1, mientras que la menor altura de planta se registró en el genotipo IR 99742:2 -11-17-1-9-B (64.30 cm). PR- 126, mientras que el mayor rendimiento de paja se registró en IR 86515-19-1-2-1-1-1-1 (5.78 t.ha-1). De igual forma, los menores números de macollos efectivos (150.73 por m2), longitud de panoja (18.51 cm), número de granos por panoja (158.30) y peso de mil granos (22.53 g) se registraron en IR 99742:2-11-17-1- 9-B. Así, con base en el rendimiento y otros parámetros de crecimiento, se encontró que el genotipo PR-126 era el más adecuado para lograr una mayor productividad en Bagdula, Pyuthan, Nepal. Sin embargo, para su validación se deben realizar más ensayos de rendimiento en múltiples ubicaciones, incluidas evaluaciones del contenido de nutrientes.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Adhikari, B. B., Mehera, B., & Haefele, S. M. (2015). Selection of drought tolerant rice varieties for the western mid hills of Nepal. Journal of the Institute of Agriculture and Animal Science, 33, 195–206. https://doi.org/10.3126/jiaas.v33i0.20705

Adhikari, B. N., Joshi, B. P., Shrestha, J., & Bhatta, N. R. (2018). Genetic variability, heritability, genetic advance and correlation among yield and yield components of rice (Oryza sativa L.). Journal of Agriculture and Natural Resources, 1(1), 149–160. https://doi.org/10.3126/janr.v1i1.22230

Agriculture Information and Training Centre (2019). Krishi Diary 2076. Ministry of Agriculture and Livestock Development. Harihar Bhawan, Pulchok, Lalitpur, Nepal. https://aitc.gov.np/uploads/documents/agriculture-duary-2076-46662pdf-7084-940-1694580900.pdf

Akondo, R. I., Hossain, B., Akter, S. E., & Islam, M. (2020). Growth and yield performance of BINA released six promising aman rice varieties of Bangladesh. Asian Plant Research Journal, 6(3), 18–25. https://doi.org/10.9734/aprj/2020/v6i330130

Ashrafuzzaman, M., Islam, M. R., Ismail, M. R., Shahidullah, S. M., & Hanafi, M. M. (2009). Evaluation of six aromatic rice varieties for yield and yield contributing characters. International Journal of Agriculture & Biology, 11(5), 616–620.

Begho, T. (2021). Using Farmers’ Risk Tolerance to Explain Variations in Adoption of Improved Rice Varieties in Nepal. Journal of South Asian Development, 16(2), 171–193. https://doi.org/10.1177/09731741211023636

Callaway, E. (2014). Domestication: The birth of rice. Nature, 514, S58–S59. https://doi.org/10.1038/514S58a

Chauhan, B. S., & Johnson, D. E. (2011). Growth Response of Direct-Seeded Rice to Oxadiazon and Bispyribac-Sodium in Aerobic and Saturated Soils. Weed Science, 59(1), 119–122. https://doi.org/10.1614/WS-D-10-00075.1

Choi, A., Kusutani, A., Toyota, M., & Asanuma, K. (2000). Studies on the varietal difference of harvest index in rice. Relationship between harvest index and morphological characteristics and leaf color. Japanese Journal of Crop Science, 69(3), 359–364. https://doi.org/10.1626/jcs.69.359

Dahipahle, A. V., & Singh, U. P. (2018). Effect of crop establishment, nitrogen levels and time of nitrogen application on growth and yield attributing parameters of direct seeded rice (Oryza sativa L.). International Journal of Chemical Studies, 6(2), 2889–2893. https://www.chemijournal.com/archives/2018/vol6issue2/PartAO/6-2-357-891.pdf

Dutta, R. K., Baset, M., & Khanam, S. (2002). Plant architecture and growth characteristics of fine grain and aromatic rices and their relation with grain yield. International Rice Commission (IRC) Newsletter, 51, 51–56. https://www.fao.org/3/y6159t/y6159t06.htm

Development Vision Nepal (2018). Inter Provincial Dependency for Agricultural Development, pp 1-72. Ministry of Agriculture, Land Management and Cooperative Department of Agriculture, Harihar Bhawan, Lalitpur, Nepal, Department of Agriculture. http://www.doanepal.gov.np/downloadfile/Final%20Report%20Inter-Provincial%20Dependency%20on%20Agriculture%20-%20DVN%202018_1548834926.pdf

Food and Agriculture Organization Corporate Statistical Database (2020, January 3). Production/yield quantities of rice/paddy in world. https://www.fao.org/faostat/en/#data/QCL/visualize

Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research. John Wiley & Sons.

Hussain, S., Fujii, T., McGoey, S., Yamada, M., Ramzan, M., & Akmal, M. (2014). Evaluation of different rice varieties for growth and yield characteristics. Journal of Animal & Plant Sciences, 24(5), 1504–1510.

Islam, N., Kabir, M. Y., Adhikary, S. K., & Jahan, M. S. (2013). Yield performance of six local aromatic rice cultivars. IOSR Journal of Agriculture and Veterinary Science, 6(3), 58–62.

Joshi, B. K., Bhatta, M. R., Ghimire, K. H., Khanal, M., Gurung, S. B., Dhakal, R., & Sthapit, B. R. (2017). Released and promising crop varieties of mountain agriculture in Nepal (1959–2016). Bioversity International. https://cgspace.cgiar.org/rest/bitstreams/119020/retrieve.

Joshi, K. D., Rana, R. B., Subedi, M., Kadayat, K. B., & Sthapit, B. R. (1995). Effectiveness of participatory variety testing and dissemination programme: a case study of Chaite rice in the Western Hills of Nepal. LARC Working Paper (Nepal), (95).

Khatun, S., Mondal, M. M. A., Khalil, M. I., Roknuzzaman, M., & Mollah, M. M. I. (2020). Growth and yield performance of six aman rice varieties of Bangladesh. Asian Research Journal of Agriculture, 12(2), 1–7. https://doi.org/10.9734/arja/2020/v12i230077

Mhapatra, K. C. (1993). Relative usefulness of stability parameters in assessing adaptability in rice. Indian Journal of Genetics and Plant Breeding, 53(4), 435–441.

Ministry of Agricultural Development (2015). Statistical Information of Nepalese Agriculture( 2015/16). Monitoring, Evaluation and Statistics Division. Singha Durbar, Kathmandu: Government of Nepal, Agri Statistics Section. https://moald.gov.np/wp-content/uploads/2022/04/STATISTICAL-INFORMATION-ON-NEPALESE-AGRICULTURE-2072-73.pdf

Ministry of Agriculture and Livestock Development (2020). Statistical Information on Nepalese Agriculture 2075/76 [2018/19]. http://doanepal.gov.np/downloadfile/Statistical%20information%20on%20Nepalese%20agriculture_1601976502.pdf

Patel, A. R., Patel, M. L., Patel, R. K., & Mote, B. M. (2019). Effect of different sowing date on phenology, growth and yield of rice– A review. Plant Archives, 19(1), 12–16.

Pervaiz, Z. H., Rabbani, M. A., Khaliq, I., Pearce, S. R., & Malik, S. A. (2010). Genetic diversity associated with agronomic traits using microsatellite markers in Pakistani rice landraces. Electronic Journal of Biotechnology, 13(3), 4–5. https://doi.org/10.2225/vol13-issue3-fulltext-5

Poudel, A. P., Thapa, B., Subedi, S., Subedi, M., Poudel, H. P., & Ranabhat, R. B. (2014). Upland rice varietal trials for the tars of western region of Nepal. Proceedings of the 11th National Outreach Research Workshop 9-10 June 2014 (26-27 Jestha, 2071). (NARC Publication Serial No. 00177-87/2014/2015).

Rahman, M. S., Jahan, T., Rahman, S. M. M., Rahman, M. M., Haque, M. M., & Khan, M. A. A. (2018). Evaluation of Some Transplanted AUS Rice Genotypes for Morphology, Yield and Disease Incidence. European Academic Research, 6(1), 291–302.

Ramasamy, S., Chandrasekaran, B., & Sankaran, S. (1987). Effect of spacing and seedlings per hill. International rice research newsletter,12(4), 49.

Ren, M., Huang, M., Qiu, H., Chun, Y., Li, L., Kumar, A., Fang, J., Zhao, J., He, H., & Li, X. (2021). Genome-Wide Association Study of the Genetic Basis of Effective Tiller Number in Rice. Rice, 14(1). https://doi.org/10.1186/s12284-021-00495-8

Roy, S. K., Ali, M. Y., Jahan, M. S., Saha, U. K., Ahmad-Hamdani, M. S., Hasan, M. M., & Alam, M. A. (2014). Evaluation of growth and yield attributing characteristics of indigenous Boro rice varieties. Life Science Journal, 11(4), 122–126.

Sharma, N. (2002). Quality characteristics of non-aromatic and aromatic rice (Oryza sativa) varieties of Punjab. Indian Journal of Agricultural Sciences, 72(7), 408–410. https://epubs.icar.org.in/index.php/IJAgS/article/view/40939

Shrestha, J., Kushwaha, U. K. S., Maharjan, B., Kandel, M., Gurung, S. B., Poudel, A. P., Karna, M. K. L. & Acharya, R. (2020). Grain yield stability of rice genotypes. Indonesian Journal of Agricultural Research, 3(2), 116–126. https://doi.org/10.32734/injar.v3i2.3868

Subedi, S., Sharma, S., Poudel, A., Adhikari, S., & V. K. C. (2018). Varietal evaluation and preference analysis of promising spring rice genotypes in Dhamilikuwa, Lamjung, Nepal. Open Journal of Plant Science, 3(1), 015–017. https://doi.org/10.17352/ojps.000009

Subudhi, H. N., Prasad, K. V. S. V., Ramakrishna, C., Rameswar, P. S., Pathak, H., Ravi, D., Khan, A. A., Padmakumar, V., & Blümmel, M. (2020). Genetic variation for grain yield, straw yield and straw quality traits in 132 diverse rice varieties released for different ecologies such as upland, lowland, irrigated and salinity prone areas in India. Field Crops Research, 245, 107626. https://doi.org/10.1016/j.fcr.2019.107626

Tahir, M., Waden, D., & Zada, A. (2002). Genetic variability of different plant yield attributes in rice. Sarhad Journal of Agriculture, 18(2), 13–17.

Tiwari, D. N., Tripathi, S. R., Tripathi, M. P., Khatri, N., & Bastola, B. R. (2019). Genetic variability and correlation coefficients of major traits in early maturing rice under rainfed lowland environments of Nepal. Advances in Agriculture, 2019, 1–9. https://doi.org/10.1155/2019/5975901

Tripathi, B. P., Bhandari, H. N., & Ladha, J. K. (2019). Rice Strategy for Nepal. Acta Scientific Agriculture, 3(2), 171–180. https://actascientific.com/ASAG/pdf/ASAG-03-0351.pdf

Virmani, S. S., & Kumar, I. (2004). Development and use of hybrid rice technology to increase rice productivity in the tropics. International Rice Research Notes, 29(1), 10–19.

Yang, W., Peng, S., Laza, R. C., Visperas, R. M., & Dionisio‐Sese, M. L. (2007). Grain yield and yield attributes of new plant type and hybrid rice. Crop Science, 47(4), 1393–1400.

Descargas

Publicado

2023-12-30

Cómo citar

Pandey, K. R., B K, A., Singh, U. K. ., Joshi, Y. R. ., & Bhandari, A. . (2023). Evaluación varietal de genotipos prometedores de arroz de primavera en Bagdula, Pyuthan, Nepal. Peruvian Journal of Agronomy, 7(3), 167-178. https://doi.org/10.21704/pja.v7i3.2009