Estado nutricional y formas del potasio en los suelos cultivados de la Universidad de Benin
DOI:
https://doi.org/10.21704/pja.v8i2.2103Palabras clave:
nutrientes del suelo, uso de la tierra, formas de potasioResumen
Este estudio se llevó a cabo para determinar el estado nutricional y las formas del potasio en suelos cultivados en la Universidad de Benin. Se recogieron muestras de suelo de la granja experimental y de la zona de control a una profundidad de 0 cm a 15 cm, de 15 cm a 30 cm y de 30 cm a 45 cm utilizando un medidor de suelo. Los suelos recogidos de cada profundidad se secaron al aire, se trituraron y se tamizaron. Las muestras tamizadas se analizaron para determinar algunas propiedades físicas y químicas mediante procedimientos de laboratorio estándar. Los datos obtenidos se analizaron mediante el paquete informático Genstat con un nivel de probabilidad del 5 %. El resultado mostró que la fracción de arena (833.9 g.kg-1) era predominante en el sitio de la granja experimental. El pH (4.58) se registró en la explotación experimental en comparación con el control (4.35). El resultado mostró que (0.13 mg.kg-1) potasio soluble en agua (H2OK) fue registrado en la profundidad del suelo de 0 cm - 15 cm. El resultado mostró que el potasio intercambiable (K) (0.17 mg.kg-1) en el sitio de la Granja Experimental es superior al sitio control (0.12 mg.kg-1). El resultado medio de HCl K (0.37 mg.kg-1), K ácido (0.13 mg.kg-1), K residual (0.45 mg.kg-1) y K total (1.35 mg.kg-1) del sitio de la granja experimental fueron superiores al sitio de control HCl K (0.3 mg.kg-1), K ácido (0.12 mg.kg-1), K residual (0.39 mg.kg-1) y K total (1.18 mg.kg-1) respectivamente. El resultado mostró que las formas de potasio, H2O K, K intercambiado, HCl K, K ácido, K residual, y K total exhibieron correlaciones positivas con CE, materia orgánica (M.O), nitrógeno total (T. N), sodio (Na), potasio (K), calcio (Ca), magnesio (Mg), y fósforo medio (prom. P).
Descargas
Referencias
Akamigbo, F.O.R., & Ukaegbu, C.E. (2003). The Rule of Soil Conservation in Nigeria, Agriculture in 21st Century. Invited paper to USDA Workshop, NRCRI
Arienzo M., Christen E.W., Jayawardane N.S., & Quayle W.C. (2012). The relative effects of sodium and potassium on soil hydraulic conductivity and implications for winery wastewater management. Geoderma, 173–174, 303–310 https://doi.org/10.1016/j.geoderma.2011.12.012
Atta A. A., Morgan K. T., Hamido S. A., & Kadyampakeni D. M. (2020). Effect of essential nutrients on root growth and lifespan of Huanglongbing affected citrus trees. Plants, 9(4), 1–20. https://doi.org/10.3390/plants9040483
Bauder, J. & Brock, T. (2001). Irrigation water quality, soil amendment, and crop effects on sodium leaching. Arid Land Research and Management, 15(8),101–113. https://doi.org/10.1080/15324980151062724
Bremner J. M., & Mulvaney, C. S. (1982). Nitrogen-total. In A.L. Page, R.H. Miller & D.R. Keeney (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 595–624). American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin.
Cornell University Cooperative Extension (CUCE) (2007). Cation Exchange Capacity (CEC). Agronomy Fact Sheet Series # 22. Department of Crop and Soil Sciences, College of Agriculture and Life Sciences, Cornell University.
Crozier, C. R., & Hardy, D. H. (2003). Soil Facts: Soil Acidity and Liming—Basic Information for Farmers and Gardeners. AG-439-51, North Carolina Cooperative Extension.
Curry, J. P., & Good, J. A. (1992). Soil Faunal Degradation and Restoration. In: R. Lal & B.A. Stewart (Eds.), Soil Restoration. Advances in Soil Science, vol 17. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2820-2_7
Das, P. K., Sahu, G. S., & Das, N. (1997). Vertical distribution and release characteristics of potassium in some lateritic soils of Orissa. Journal of Potassium Research, 13(3), 105–110.
Doran, J. W., Sarrantonio, M., & Liebig, M. A. (1996). Soil health and sustainability. Advances in Agronomy, 56, 1–54. http://dx.doi.org/10.1016/S0065-2113(08)60178-9
Ferrarezi, R. S., Lin, X., Gonzalez, A. C., Tabay, F., Hu, H., Wang, X., Huang, J. H., & Fan, G. (2022). Substrate pH Influences the Nutrient Absorption and Rhizosphere Microbiome of Huanglongbing-Affected Grapefruit Plants. Front. in Plant Science, 13. https://doi.org/10.3389/fpls.2022.856937
Gee, G. W., & Or, D. (2002) Particle Size Analysis. In: J. H. Dane & G. C. Topp (Eds.), Methods of Soil Analysis, Part 4, Physical Methods (pp. 255–293). Soils Science Society of America.
Ghiri, M. N., & Abtahi, A. (2011). Potassium dynamics in calcareous vertisols of Southern Iran. Arid Land Reserve Management, 25(3), 257–274. https://doi.org/10.1080/15324982.2011.565857
Ghosh, B. N., & Mukhopadhyay, A. K. (1996). Potassium release characteristics of some soils of West Bengal and their relationship with forms of soil K and clay mineralogy. Geoderma, 104, 135–144.
Jackson, M. L. (1962). Soil chemical analysis. Prentice Hall, New York. 263–268.
Jalali, M., & Khanlari, Z. V. (2014). Kinetics of potassium release from calcareous soils under different land use. Arid Land Research and Management, 28, 1–13
Ladha, J. K., Pathak, H., Krupnik, T. J., Six, J., & Van Kessel, C. (2005). Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advance. Agronomy, 87, 85–156.
Lal, R. (1991). Soil conservation and biodiversity. In D.L. Hawksworth, (ed.), The biodiversity of microorganisms and invertebrates: its role in sustainable agriculture (pp. 89–103). Wallingford, UK, CAB International
Lalitha, M., & Dhakshinamoorthy, M. (2014). Forms of Potassium: A review National of Soil Survey and Land Use Planning. Agricultural Review, 560 024, 35, 1. https://doi.org/10.5958/j.0976-0741.35.1.008
Nayan, A., & Walia, C. S. (1999). Profile distribution of various forms of potassium in some landforms of Bundelkhand region. J. Potassium Res., 15, 1–4.
Ndukwu B. N., Chukwuma M. C., Idigbor C. M., & Obasi S. N. (2012). Forms and distribution of potassium in soils underlain by three lithologies Southeastern Nigeria. INT’L Journal of Agriculture. and rural Development, 15(2), 1104.
Niu, D. F., Li, B. S., Wang, F. N., Wen, X. H., Ma, J. L., & Shu, P. X. (2015). Climate changes indicated by the clay minerals: A case of the Dishaogouwan section on the southeastern margin of the Mu Us Desert. Journal of Fuzhou University (National Science Education), 43, 345–351.
Nocco, M. A., Ruark, M. D., & Kucharik, C. (2019). Apparent electrical conductivity predicts the physical properties of coarse soils. Geoderma, 335, 1–11. https://doi.org/10.1016/j.geoderma.2018.07.047
Osmond, D.L., Crozier, & Hardy, D. H. (2002). SoilFacts: Careful Soil Sampling—The Key to Reliable Soil Test Information. AG-439-30, North Carolina Cooperative Extension.
Phillip, R. (2022). Reference Module in Earth Systems and Environmental Sciences.
Pratt, P. F. (1965). Potassium. In C. A. Black (Ed.), ‘Methods of soil analysis, Part 2: chemical and microbiological properties (pp. 1023–1031). American Society of Agronomy: Madison, Wisconsin.
Pribyl, D. W. (2010). A critical review of the conventional SOC to SOM conversion factor. Geoderma. 156(3),75–83. https://doi.org/10.1016/j.geoderma.2010.02.003
Recous, S., Robin, D., Darwis, D., & Mary, B. (1995). Soil inorganic nitrogen availability: Effect on maize residue decomposition. Soil Biology. Biochem, 27, 1529–1538. https://doi.org/10.1016/0038-0717(95)00096-W
Sharma, B. D., Mukhopadhyay, S. S., & Sawhney, J. S., (2006). Distribution of potassium fractions in relation to landforms in a Himalayan catena. Archives Agronomy Soil, 52, 469–476. https://doi.org/10.1080/03650340600743717
Simonsson, M., Hillier, S., & Öborn I. (2009). Changes in clay minerals and potassium fixation capacity as a result of release and fixation of potassium in long-term field experiments. Geoderma, 151(3–4),109–120 https://doi.org/10.1016/j.geoderma.2009.03.018
Strivastava, K. S. (2007). Academic Dictionary of Botany. First edition, (pp 201).
Udo, E. J, Ibia, T. O., Ogunwale J. A, Ano, A. O., Esu, I. E., Udoh, B. T., Ndaeya, N.U., & Harold, K.O. (2006). Fertility status and variability of some soils developed from parent material in the humid region of Nigeria. Proceedings of the 31st Annual Conference of Soil Science of Nigeria (SSSN), 13th – 17th November, 2006, Ahmadu Bello University, Zaria, 79 – 85.
Walkley, A., & Black I. A. (1934). An examination of the different methods for determining soil organic matter and the proposed modification of the chromic acid wet titration method. Soil Science of America Journal, 37, 29–38. http://dx.doi.org/10.1097/00010694-193401000-00003
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2024 I. U. Efenudu, I.P. Egharevba
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.