Mecanismos genéticos de resistencia al tizón de la hoja (Turcicum) en el maíz tempranero de calidad con provitamina A

Autores/as

  • Bashir Omolaran BELLO University of Abuja, Department of Crop Science, Nigeria. https://orcid.org/0000-0001-8183-9884
  • Sunday Ayodele IGE Landmark University, Department of Crop Science, Omuaran, Kwara State, Nigeria.
  • Micheal Segun AFOLABI Osun State University, Department of Agronomy, Ejigbo Campus, Osun State, Nigeria.

DOI:

https://doi.org/10.21704/pja.v8i2.2172

Palabras clave:

Habilidad combinatoria, desnutrición, rendimiento de grano, triptófano, resistencia a enfermedades, provitamina A.

Resumen

El maíz proteico de calidad con provitamina A (PVA-QPM), como maíz básico rentable con capacidad nutricional mejorada, tiene el potencial de hacer frente a la malnutrición en las comunidades rurales del África Sub-Sahariana. Por ello, se tuvo como objetivo identificar híbridos y líneas de PVA-QPM de maduración temprana resistentes al tizón de la hoja del Turcicum (TLB) y con una calidad del grano y un rendimiento prometedores. Entre los híbridos de PVA-QPM seleccionados existen importantes diferencias, destacando cinco híbridos -TZEIORQ 11 × TZEIORQ 20, TZEIORQ 11 × TZEIORQ 24, TZEIORQ 20 × TZEIORQ 24, TZEIORQ 22× TZEIORQ 42 y TZEIORQ 24 × TZEIORQ 42- con un rendimiento medio de 6.91 t.ha-1. Las razas TZEQI 82 y TZEIORQ 69 mostraron unos índices de enfermedad notablemente bajos. Las razas TZEIORQ 2, TZEIORQ 11, TZEIORQ 20 y TZEIORQ 70 presentaron características excepcionales. La existencia de cuadrados medios significativos en la aptitud de combinación específica (ACE) y de la habilidad combinatoria general (HCG) para todos los caracteres sugiere que las variaciones genéticas que rigen estos caracteres están influidas principalmente por efectos aditivos. Los estudios genéticos realizados sobre diversos caracteres, excepto la resistencia al TLB, han indicado un impacto positivo y significativo sobre la HCG. En los veintidós cruces seleccionados se observaron elevadas varianzas ACE para todos los caracteres. Estos resultados confirman que los métodos tradicionales de mejora genética pueden aumentar la resistencia del maíz a la enfermedad TLB y desarrollar nuevos cultivares con alta resistencia a la enfermedad, calidad del grano y rendimiento.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Abdelsalam, N. R., Balbaa, M. G., Osman, H. T., Ghareeb, R. Y., Desoky, E. M., Elshehawi, A., Aljuaid, B. S., & Elnahal, A. S. M. (2022) Inheritance of resistance against northern leaf blight of maize using conventional breeding methods. Saudi Journal of Biological Science, 29,1747–1759. https://doi.org/10.1016/j.sjbs.2021.10.055

Abera, W., Hussein, S., Derera, J., Worku, M., & Laing, M. (2016). Heterosis and combining ability of elite maize inbred lines under northern corn leaf blight disease-prone environments of the midaltitude tropics. Euphytica, 208, 391–400. https://doi.org/10.1007/s10681-015-1619-5

Akinwale, R. O., & Oyelakin, A. O. (2018). Field assessment of disease resistance status of some newly-developed early and extra-early maize varieties under humid rainforest conditions of Nigerian. Journal of Plant Breeding and Crop Science, 10, 69–79.

Ayiga-Aluba, J., Edema, R., Tusiime, G., Asea, G., & Gibson, P. (2015). Response to two cycles of S1 recurrent selection for Turcicum leaf blight in an open-pollinated maize variety population. Advanced Applied Science Research, 6(12),4‒12.

Badu-Apraku, B., & Fakorede, M. A. B. (2017). Breeding of quality protein and provitamin A maize. In B. Badu-Apraku, & M. A. B. Fakorede (eds.), Advances in genetic enhancement of early and extra-early maize for sub-Saharan Africa. Cham, Switzerland: Springer, pp. 217–244. https://doi.org/10.1007/978-3-319-64852-1_9

Badu-Apraku, B., Bankole, F. A., Ajayo, B. S., Bamidele Fakorede, M. A., Akinwale, R. O., Talabi, A. O., Bandyopadhyay, R., & Ortega-Beltran, A., (2020). Identification of early and extra-early maturing tropical maize inbred lines resistant to Exserohilum turcicum in sub-Saharan Africa. Crop Protection, 139, 105386. https://doi.org/10.1016/j.cropro.2020.105386

Badu-Apraku, B., Bankole, F. A., Fakorede, M. A. B., Ayinde, O., & Ortega‐Beltran, A. (2021). Genetic analysis of grain yield and resistance of extra‐early maturing maize inbreds to northern corn leaf blight. Crop Science. 61, 1864–1880.

Bankole, F. A., Badu-Apraku, B., Salami, A. O., Falade, T. D., Bandyopadhyay, R., & Ortega-Beltran, A. (2022). Identification of early and extra-early maturing tropical maize inbred lines with multiple disease resistance for enhanced maize production and productivity in sub-Saharan Africa. Plant Disease, 106(10), 2638–2647.

Bankole, F. A., Badu-Apraku, B., Salami, A. O., Falade. T. D. O., Bandyopadhyay, R. & Ortega-Beltran, A. (2023). Variation in the morphology and effector profiles of Exserohilum turcicum isolates associated with the northern corn leaf blight of maize in Nigeria. BMC Plant Biology, 23(386). https://doi.org/10.1186/s12870-023-04385-7

Bello, O. B., Olawuyi, O. J., Azeez, M. A., Lawal, M., Abdulmaliq, S. Y., Afolabi, M. S., Ige, S. A., & Mahamood, J. (2012). Genotypic variation in endosperm protein, lysine and tryptophan contents of normal extra-early maize cultivars and their quality protein hybrids under nitrogen stress and non-stress environments. Journal of Research (Science), 23(4), 27‒48.

Bello, O. B., & Olawuyi, O. J. (2015). Gene action, heterosis, correlation and regression estimates in developing hybrid cultivars in maize. Tropical Agriculture, 92(2),102‒117.

Bello, O. B. (2017). Diallelic analysis of maize streak virus resistance in quality protein maize topcrosses. Euphytica, 213(12), 270–279.

Bello, O. B., Mahamood, J., Suleiman, Y. A., & Ige, S. A. (2019). Genetic control of stress-tolerant extra-early quality protein maize inbreds for resistance to northern corn leaf blight disease in the tropics. Journal of African Interdisciplinary Studies, 3(8), 151–163.

Bucheyeki, T. L., Tongoona, P., Derera, J., & Nchimbi-Msolla, S. (2017). Combining ability analysis for northern leaf blight disease resistance on Tanzania adapted inbred maize lines. Advances in Crop Science and Technology, 5, 266. https://doi.org/10.4172/2329-8863.1000266

Griffing, B. (1956). Concept of general and specific combining ability in relation to diallel crossing system. Australian Journal of Biological Science, 9(4), 463–493.

Hooda, K. S., Khokhar, M. K., Shekhar, M., Karjagi, C. G., Kumar, B., Mallikarjuna, N., Devlash, R. K., Chandrashekara, C., & Yadav, O. P. (2017). Turcicum leaf blight—Sustainable management of a re-emerging maize disease. Journal of Plant Disease and Protection, 124, 101–113.

Human, M. P., Barnes, I., Craven, M., & Crampton, B. G. (2016). Lack of population structure and mixed reproduction modes in Exserohilum turcicum from South Africa. Phytopathology, 106(11),1386–1392.

Ige, S. A., Bello, O. B., Mahamood, J., Afolabi, M., Aremu, C. Abolusoro, S. A., & Abosede, A. V. (2023). Genetics of testcrossed streak virus resistance carotene quality protein maize. Plant Breeding and Biotechnology, 11(3), 155 – 167. https://doi.org/10.9787/PBB.2023.11.3.155

Iseghohi, I., Abe, A., Meseka, S., Mengesha, W., Gedil, M., Job, A., & Menkir, A. (2023). Reactions of provitamin‑A‑enriched maize to foliar diseases under field conditions in Nigeria. Cereal Research Communications, 52, 747–758. https://doi.org/10.1007/s42976-023-00395-1

Kutawa, A. B., Sijam, K., Ahmad, K., Seman, Z. A., Firdaus, M. S., Razak, A. B., & Abdullah, N. (2017). Characterisation and pathological variability of Exserohilum turcicum responsible for causing northern corn leaf blight (NCLB) disease in Malaysia. Malaysian Journal of Microbiology, 13(1),41–49.

Lea, D. T., Chua, H. D., & Lea, N. Q. (2016). Improving nutritional quality of plant proteins through genetic engineering. Current Genomics, 17(3), 220–229.

Mueller, D. S., Wise, K. A., Sisson, A. J., Allen, T. W., Bergstrom, G. C., Bosley, D. B., Bradley, C. A., Broders, K. D., Byamukama, E., & Chilvers, M. (2016). Corn yield loss estimates due to diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Health Programme, 17, 211–222. https://doi.org/10.1094/PHP-RS-16-0030

Muiru, W. M., Charles, A. K., Kimenju, J. W., Njoroge, K., & Miano, D. W. (2015). Evaluation of resistance reaction of maize germplasm to common foliar diseases in Kenya. Journal of Natural Science Research, 5(1),140–146.

Nurit, E., Tiessen, A., Pixley, K. V., & Palacios-Rojas, N. (2009). Reliable and inexpensive colorimetric method for determining protein-bound tryptophan in maize kernels. Journal of Agriculture and Food Chemistry, 57(16), 7233–7238. https://doi.org/10.1021/jf901315x

Nwanosike, M. R. O., Mabagala, R. B., & Kusolwa, P. M. (2015). Effect of northern leaf blight (Exserohilum turcicum) severity on yield of maize (Zea Mays L.) in Morogoro, Tanzania. International Journal of Science Research, 4(9), 466‒475.

Obeng-Bio, E., Badu-Apraku, B., Ifie, B. E., Danquah, A., Blay, E. T., & Annor, B. (2019). Genetic analysis of grain yield and agronomic traits of early provitamin A quality protein maize inbred lines in contrasting environments. The Journal of Agricultural Science, 157(5),413‒433. https://doi.org/10.1017/S0021859619000753

Obeng-Bio, E., Badu-Apraku, B., Elorhor Ifie, B., Danquah, A., Blay, E. T., & Dadzie, M. A (2020). Phenotypic characterization and validation of provitamin A functional genes in early maturing provitamin A-quality protein maize (Zea mays L) inbred lines. Plant Breeding, 139(3),575–588

Oyekunle, M., & Badu-Apraku, B. (2014). Genetic analysis of grain yield and other traits of early-maturing maize inbreds under drought and well-watered conditions. Journal of Agronomy and Crop Science, 200(2), 92–107.

Pixley, K., Rojas, N. N., Babu, R., Mutale, R., Surles, R., & Simpungwe, E. (2013). Biofortification of maize with provitamin A carotenoid. In S. A. Tanumihardjo (ed.), Carotenoids and Human Health (pp. 271–292). Totowa, NJ, USA: Humana Press.

Salgado, J. D., Schoenhals, J., & Pierce, A. P. (2016, April). Northern Corn Leaf Blight; Ohio State University Extension: Columbus, OH, USA.

SAS (2018). The statistical application software (SAS) statistics system for Windows release (version 9.2) SAS Institute, Inc, Cary.

Sibiya, J., Tongoona, P., Derera, J., & Makanda, I. (2013). Smallholder farmers’ perceptions of maize diseases, pests, and other production constraints, their implications for maize breeding and evaluation of local maize cultivars in KwaZulu-Natal, South Africa. African Journal of Agricultural Research, 8(17), 1790–1798.

Teklewold, A., Wegary, D., Tadesse. A., Tadesse, B., Bantte, K., Friesen, D., & Prasanna, B. M. (2015). Quality protein maize (QPM): A Guide to the technology and its promotion in Ethiopia. Addis Ababa, Ethiopia: CIMMYT.

Institute of Medicine (US) Panel on Micronutrients [U.S. IMFNB] (2001). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press (US).

Wiesner-Hanks, T., & Nelson, R. (2016). Multiple disease resistance in plants. Annual Revered Phytopathology, 54, 229–252. https://doi.org/10.1146/annurev-phyto-080615-100037

Zhang, X., Fernandes, S. B., Kaiser, C., Adhikari, P., Brown, P. J., Mideros, S. X., & Jamann, T.M. (2020). Conserved defense responses between maize and sorghum to Exserohilum turcicum. Plant Biology, 20, 57–67. https://doi.org/10.1186/s12870-020-2275-z

Zhu, X., Reid, L. M., Woldemariam, T., Wu, J., Jindal, K. K., & Kebede, A. (2023). Resistance breeding for northern corn leaf blight with dominant genes, polygene, and their combinations - Effects on disease traits. Agronomy, 13(4), 1096–1100. https://doi.org/10.3390/agronomy13041096

Descargas

Publicado

2024-08-30

Número

Sección

Artículos

Cómo citar

BELLO, B. O. ., IGE, S. A., & AFOLABI, M. S. (2024). Mecanismos genéticos de resistencia al tizón de la hoja (Turcicum) en el maíz tempranero de calidad con provitamina A. Peruvian Journal of Agronomy, 8(2), 145-157. https://doi.org/10.21704/pja.v8i2.2172