Pseudomonas of the rhizosphere of avocado (Persea americana Mill.) with biocontrol activity of Phytophthora cinnamomi Rands isolated in the central coast of Peru

J. Mamani, L. Aragón

Resumen


In the rhizosphere, as the zone of biological activity, diversity of microorganisms can be found like bacteria of the genus Pseudomonas. They are characterized for controlling pathogens like Phytophthora cinnamomi, also to be promoters of growth. For this reason, in the present study, bacteria of the genus Pseudomonas were isolated from the avocado rhizosphere of the provinces of Casma, Huaral, and Lima. A total of six strains (R2, R5, R7, R10, S10 and S6) were selected for evaluating their biocontrol capacity against P. cinnamomi under in vitro and greenhouse conditions. In the in vitro test, strains S6 and S10 controlled 30.3 and 44 %, respectively. Under greenhouse conditions, Pseudomonas strains were inoculated on 4-month-old avocado cv. “Zutano” plants. Five months later, we evaluated the following variables: severity in roots, height increase, fresh root and leaf weight, and percentage of root and leaf dry matter. In greenhouse, the best strains in the control of P. cinnamomi were S6, R2, R7 and R10, controlling 55.2, 39.5, 33.7 and 31.0 %, respectively. In the increase of height, the strains S6, R2, R7 and R10 reached 11.4, 9.3, 7.6 and 5.1 cm, respectively. The percentage of dry matter of roots, strains S10, R10 and R7 obtained 29.6, 27.5 and 27.9 %, respectively. In this study, it was observed that although the application of Pseudomonas controls P. cinnamomi, it also induces the root and apical growth of avocado.


Palabras clave


avocado, promoter of growth, Pseudomonas, rhizosphere.

Texto completo:

PDF (English)

Referencias


Arteaga, W. (2016). Perspectivas globales para el mango y la palta peruana. Revista Red Agrícola Perú, 34, 60-61.

Broadbent, P. & Baker, K. (1974). Comportamiento de Phytophthora cinnamomi en el suelo supresivo y favorable a la pudrición de raíz. Diario Australiano de Investigación Agrícola, 25,121-137.

Burges, A. (1960). Introducción a la microbiología de suelos. Editorial Acribia. Zaragoza España. Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requieres functional nodulation genes. Journal of Bacteriology, 170, 3164 – 3169.

De la Fuente, L., Bajsan, N., Quagliotto, L., Fabiano, E., Pérez, C., Altier, N. & Arias, A. (2000). Interactions among rhizobia and biocontrol agents in forage legumes. In: Pedrosa F. et al. (Eds), Nitrogen fixation: from molecules to crop productivity. (552 p.) Kluwer Academic Press.

Diby, P., Saju, K., Jisha, P., Sarma, Y., Kumar, A. & Anandaraj, M. (2005). Mycolitic enzimes produced by Pseudomonas fluorescens and Trichoderma spp. against Phytophthora capsici, the foot pathogen of black pepper (Piper nigrum L.). Annals of Microbiology, 55 (2), 129-133.

Erwin, D. & Ribeiro, O. (1996). Phytophthora diseases worldwide. The American Phytopathological Society. St Paul, Minnesota. P: 84, 178, 263, 265-266

Faggioli, S., Cazorla, C., Vigna, A. & Berti, F. (2007). Fertilizantes Biológicos en maíz. Ensayo de inoculación con cepas de Azospirillum brasilense y Pseudomonas fluorescens. In: Jornada de Actualización técnica de maíz Nº 5. EEA INTA

Glick, R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41, 109–117. https://doi.org/10.1139/m95-015

Herrera, M. & Narrea, M. (2011). Manejo integrado de palto. Guía técnica curso-taller. Jornada de capacitación UNALM-Agrobanco. Moquegua-Perú. 6 pp.

Lamari, L. (2002). ASSESS Image Analysis Software for Plant Disease Quantification. APS Press. The American Phytopathological Society. St. Paul, Minnesota, USA.

Mac Faddin, J. (1980). Pruebas Bioquímicas para la identificación de bacterias. Editorial Médica Panamericana, Buenos Aires, Argentina.

Marques, C., Pires, C., Moreira, H., Rangel, S. & Castro, L. (2010). Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42, 1229–1235. http://dx.doi.org/10.1016/j.soilbio.2010.04.014

Martínez, C. (2010). Diversidad y selección de Pseudomonas fluorescentes provenientes de la rizósfera y suelo como promotores de crecimiento y desarrollo de plantas de papa. UNALM. Lima, Peru. 32-49 pp.

MINAGRI. (2014). Anuario “Producción agrícola 2014”. Perú. 161pp

Mora, A., Téliz, D., Mora, G. & Etchevers, J. (2007). Tristeza del aguacate (Phytophthora cinnamomi). In: Téliz, D. y Mora, A. El aguacate y su manejo integrado. Mundi prensa. Pp 192-201.

Palleroni, J. (2005). Genus I. Pseudomonas Migula 1894. In: Bergey’s Manual of Systematic Bacteriology, 2nd edn, Vol. 2. The Proteobacteria, Part B, the Gamma Proteobacteria.

Raaijmakers, J., Vlami, M. & De Souza, J. (2002). Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek, 81, 537-547.

Rodríguez, E., Gamboa, M., Hernández, F. & García, J. (2005). Bacteriología General. Principios y prácticas de Laboratorio.

SAS Institute Inc. (2009). Base SAS ® 9.2 Procedures Guide. Cary, NC: SAS Institute Inc.

Schaad, W. (2001). Laboratory guide for identification of plant pathogenic bacteria / edited by N.W. Schaad for the Bacteriology Committee of the American Phytopathological Society. 1988. 84-108 pp.

Schroth, N. & Hancock, G. (1982). Disease suppressive soil and root colonizing bacteria. Science, 216, 1376-1381.

Thomashow, S. & Weller, M. (1996). Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites, p. 187–236. In G. Stacey and N. T. Keen (ed.), Plant-microbe interactions, vol. 1. Chapman & Hall, Ltd., London, United Kingdom.

UK Standards for Microbiology Investigations. (2015). Identification of Pseudomonas species and other NonGlucose Fermenters. UK Standards for Microbiology Investigations Issued by the Standards Unit, Public Health England. Bacteriology – Identification. ID 17. Issue no: 3. Issue date: 13.04.15. 2-41 pp.

Van Weels, M., Pietersen, J., Trijssenaar, A., Van Westende, A., Hartog, F. & Van Loon, C. (1997). Diferential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Molecular Plant-Microbe Interactions, 10, 716-724. http://web.science.uu.nl/pmi/publications/PDF/1997/MPMI-VanWees-1997.pdf

Villa, M., Frías, A. & Gonzales, G. (2005). Evaluación de cepas de Pseudomonas sp. para el control de hongos fitopatógenos que afectan cultivos de interés económico. Instituto Cubano de Investigaciones de los Derivados de la Caña de Azúcar (ICIDCA). Available in: http://www.redalyc.org/pdf/2231/223120688007.pdf

Weller, D., Landa, B., Mavrodi, O., Schroeder, K., De La Fuente, L., Bankhead, S., Molar, R., Bonsall, R., Mavrodi, D. & Thomashow, L. (2006). Role of 2, 4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biology, 9(1), 4-20. https://naldc.nal.usda.gov/download/15354/PDF

Yang, C., Crowley, D. & Menge J. (2001). 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiology Ecology, 35(2), 129-136; 20

Zentmyer, A. (1980). Phytophthora cinnamomi and diseases it causes. Phytopathological Monograph. Phytopathology. Soc. 96 pp.

Zentmyer, G. & Richards, S. (1952). Pathogenicity of Phytophthora cinnamomi to avocado trees and the effects of irrigation on disease development. Phytopathology,42,35-37.




DOI: http://dx.doi.org/10.21704/pja.v2i3.1231

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2018 Marilyn Aurora Buendia Molina

Office:

Peruvian Journal of Agronomy
Facultad de Agronomía
Universidad Nacional Agraria La Molina
Av. La Molina s/n, La Molina.
Lima 12. Perú
Phone: +51 (1) 6147800 - 475
e-mail: pja@lamolina.edu.pe