Efficiency of Trichoderma viride as a biocontrol agent for Phytophthora capsici in Pepper (Capsicum annuum L.)


  • Romero, V. Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú.
  • Aragón, L. Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú.
  • Casas, A. Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú.
  • Apaza, W. Universidad Nacional Agraria La Molina, Av. La Molina s/n, Lima, Perú.




Biocontrol, Capsicum annuum L, Phytophthora capsici, Trichoderma viride, growth methods


Phytophthora capsici is one of the most devastating pathogens that limits the production of Paprika (Capsicum annuum L.) worldwide. Likewise, Trichoderma viride stands out as a biological agent due to its antagonistic effect, resistance inducer, growth stimulator, etc. The present work evaluated the effectiveness of T. viride as a biocontrol agent against P. capsici in Paprika using three growth methods (direct seeding, plantlet and bare root). Twelve treatments were developed under greenhouse conditions, including a control (without inoculum) and a completely randomized design with a factorial arrangement. T. viride inoculation was carried out 40 days after sowing at a concentration of 106 conidia ml-1 while P. capsici was inoculated 50 days after sowing using three colonized wheat grains per plant. The inoculation method of the controlling agent in the direct seeding and plantlet was given by drench, and in the bare root was carried out by immersing of the seedling for 5 minutes prior to the transplant. Then, the correlation between plant growth method and P. capsici, and the interaction between T. viride and the plant growth method were made. The results showed that the highest efficacy of T. viride as a P. capsici biocontrol agent was in the method of the plantlet and bare root. The correlation between the method of growing crop and root rot was lower in bare root (74 % severity). In the other two treatments (direct seedling and plantlet) 100 % of plants were dead; finally, the effect of T. viride as a growth inducer was not evidenced in any of the treatments. Regarding AUDPC, the direct seeding method showed a higher incidence. The bare root planting method obtained the lowest value of the T. viride and P. capsici interaction.


Download data is not yet available.


Apaza, W., Armas, G., Baker, R., & Carlili, M. J. (1966). The orientation of zoospores and germ tubes. In N. F. Madelin (eds.), The Fungus Spore (pp. 175–187). Butterworths London.

Barchenger, D. W., Lamour, K. H., & Bosland, P. W. (2018). Challenges and strategies for breeding resistance in Capsicum annuum to the multifarious pathogen, Phytophthora capsici. Frontiers in Plant Science, 9, 628. https://doi.org/10.3389/fpls.2018.00628

Callaghan, S. E., Williams, A. P., Burgess, T., White, D., Keovorlajak, T., Phitsanoukane, P., Phantavong, S., Vilavong, S., Ireland, K. B., Duckitt, G. S. & Burgess, L. W. (2016). First report of Phytophthora capsici in the Lao PDR. Australasian Plant Disease Notes, 11, 22. https://doi.org/10.1007/s13314-016-0210-9

Dunn, A. R., & Smart, C. D. (2015). Interactions of Phytophthora capsici with resistant and susceptible pepper roots and stems. Phytopathology, 105(10), 1355–1361.

Elgorban, A. M., Al-Rahmah, A. N., Sayed, S. R., Hirad, A., Mostafa, A. A. F., & Bahkali, A. H. (2016). Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnology & Biotechnological Equipment, 30(2), 299–304. https://doi.org/10.1080/13102818.2015.1133255

Food and Agriculture Organization (2020a). FAOSTAT. Retrieved May 21, 2020, from https://www.fao.org/faostat/es/#data/QCL

Food and Agriculture Organization (2020b). FAOSTAT. Retrieved May 20, 2020, from https://www.fao.org/faostat/es/#data/QCL

French, E. R., & Hebert, T. T. (1980). Métodos de investigación fitopatológica. Instituto Interamericano de Ciencias Agrícolas (IICA), San José, Costa Rica.

Harman, G. (2003). Trichoderma harzianum, T. viridis, T. koningii, T hamatum (Deuteromycetes: Moniliales) Consultada: 7 feb 2008.

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature reviews microbiology, 2(1), 43–56. https://doi.org/10.1038/nrmicro797

Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190–194. https://doi.org/10.1094/PHYTO-96-0190

Hickman, C. J. (1970). Biology of Phytophthora zoospores. Phytopathology, 60(7), 1128–1135. https://www.cabdirect.org/cabdirect/abstract/19711104065

Infante, D., Martínez, B., González, N., & Reyes, Y. (2009). Mecanismos de acción de Trichoderma frente a hongos fitopatógenos. Revista de protección vegetal, 24(1), 14–21.

Lamour, K. H., Stam, R., Jupe, J., & Huitema, E. (2012). The oomycete broad‐host‐range pathogen Phytophthora capsici. Molecular plant pathology, 13(4), 329–337. https://doi.org/10.1111/j.1364-3703.2011.00754.x

Ministerio de Agricultura y Riego (2019). Encuesta nacional de intenciones de siembra. Ministerio de Agricultura y Riego, Sistema Integrado de Estadísticas Agrarias. https://cdn.www.gob.pe/uploads/document/file/419548/resumen_ejec_enis__2019_180719.pdf

Monroy-Barbosa, A., & Bosland, P. W. (2011). Identification of novel physiological races of Phytophthora capsici causing foliar blight using the New Mexico recombinant inbred pepper lines set as a host differential. Journal of the American Society for Horticultural Science, 136(3), 205–210.

Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., Berg, G., & Zeilinger, S. (2012). Trichoderma–plant–pathogen interactions: advances in genetics of biological control. Indian journal of microbiology, 52(4), 522–529. https://doi.org/10.1007/s12088-012-0308-5

Ocampo, M. 2003. Control Biológico de Phytophthora capsici León en Pimiento (Capsicum annuum) [Bachelor’s thesis]. Universidad Nacional Agraria La Molina.

Pineda-Insuasti, J. A., Benavides-Sotelo, E. N., Duarte-Trujillo, A. S., Burgos-Rada, C. A., Soto-Arroyave, C. P., Pineda-Soto, C. A., Fierro-Ramos, F. J.; Mora-Muñoz, E. S., & Álvarez-Ramos, S. E. (2017). Producción de biopreparados de Trichoderma spp: una revisión. ICIDCA. Sobre los Derivados de la Caña de Azúcar, 51(1), 47–52. https://www.redalyc.org/pdf/2231/223153894008.pdf

Ritchie, G. A., & Dunlap, J. R. (1980). Root growth potential: its development and expression in forest tree seedlings. NZJ For. Sci, 10(1), 218–248. https://www.scionresearch.com/__data/assets/pdf_file/0019/36811/NZJFS1011980RITCHIE218_248.pdf

Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology, 67(8), 1051–1056. https://www.apsnet.org/publications/phytopathology/backissues/Documents/1977Articles/Phyto67n08_1051.PDF

Siddaiah, C. N., Satyanarayana, N. R., Mudili, V., Gupta, V. K., Gurunathan, S., Rangappa, S., Huntrike, S. S., & Srivastava, R. K. (2017). Elicitation of resistance and associated defense responses in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Scientific reports, 7(1), 1–18. https://doi.org/10.1038/srep43991

Silvar, C., Merino, F., & Diaz, J. (2006). Diversity of Phytophthora capsici in Northwest Spain: analysis of virulence, metalaxyl response, and molecular characterization. Plant Disease, 90(9), 1135–1142. https://doi.org/10.1094/PD-90-1135.

Stasz, T. E., & Martin, S. P. (1988). Insensitivity of thick-walled oospores of Pythium ultimum to fungicides, methyl bromide, and heat. Phytopathology, 78(11), 1409–1412.

Tomah, A. A., Abd Alamer, I. S., Li, B., & Zhang, J. Z. (2020). A new species of Trichoderma and gliotoxin role: A new observation in enhancing biocontrol potential of T. virens against Phytophthora capsici on chili pepper. Biological Control,145, 104261. https://doi.org/10.1016/j.biocontrol.2020.104261

Zeilinger, S., Gruber, S., Bansal, R., & Mukherjee, P. K. (2016). Secondary metabolism in Trichoderma–Chemistry meets genomics. Fungal biology reviews, 30(2), 74–90. https://doi.org/10.1016/j.fbr.2016.05.001




How to Cite

Romero, V., Aragón, L., Casas, A., & Apaza, W. (2022). Efficiency of Trichoderma viride as a biocontrol agent for Phytophthora capsici in Pepper (Capsicum annuum L.). eruvian ournal of gronomy, 6(3), 229–238. https://doi.org/10.21704/pja.v6i3.1975